• Title/Summary/Keyword: gas chromatography-mass spectrometry

Search Result 971, Processing Time 0.036 seconds

Enantioseparation of Flurbiprofen and Ketoprofen in Patches and in Urine Excretions by Achiral Gas Chromatography

  • Paik, Man-Jeong;Nguyen, Duc-Toan;Kim , Kyoung-Rae
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1295-1301
    • /
    • 2004
  • The enantiomeric composition tests on flurbiprofen and ketoprofen present in patch products and in urine excretions following patch applications were performed as diastereomeric (R)-(+)- 1-phenylethylamides by achiral gas chromatography and by gas chromatography-mass spectrometry in selected ion monitoring mode. The method for determination of (R)- and (S)-enantiomers in the range from 0.1 to 5.0 ${\mu}$g was linear (r ${\ge}$ 0.9996) with acceptable precision (% RSD ${\le}$5.2) and accuracy (% RE = 0.6 ~ -2.4). The enantiomeric compositions of flurbiprofen in one patch product and of ketoprofen in five different products were identified to be racemic with relatively good precision (${\le}$ 6.4%). The urinary excretion level of (R)-flurbiprofen was two times higher than its antipode, while the comparable excretion levels of (R)- and (S)-enantiomers for ketoprofen were observed.

Separation of Light Rare-Earth Elements Using Gas-Pressurized Extraction Chromatography

  • Kim, Namuk;Park, Jai Il;Um, Wooyong;Kim, Jihye
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.186-191
    • /
    • 2021
  • A new method for chemical separation of light rare-earth elements (LREEs) using gas-pressurized extraction chromatography (GPEC) is described. GPEC is a microscale column chromatography system that features a constant flow of solvents, which is created by pressurized nitrogen gas. The separation column with a Teflon tubing was packed with LN resin. The proposed GPEC method facilitates production of lesser chemical wastes and faster separation owing to the use of low solvent volume compared to traditional column chromatography. We evaluated the separation of Ba, La, Ce, and Nd using various elution solvents. The column reproducibility of the proposed GPEC system ranged from 2.4% to 4.9% with RSDs of recoveries, and the column-to-column reproducibility ranged from 3.1% to 6.3% with RSDs of recoveries. The proposed technique is robust, and it can be useful for the fast separation of LREEs.

Comparison of Liquid Chromatography-Mass/Mass Spectrometry (MS) and Gas Chromatography-MS for Quantitative Analysis of Indole-3-acetic acid and Indole-3-butyric acid from the Concentrated Liquid Fertilizer (Liquid Chromatography-Mass/Mass Spectrometry (MS)와 Gas Chromatography-MS를 이용한 농축 액상 비료제품 중 Indole-3-acetic acid 및 Indole-3-butyric acid 정량분석능 비교)

  • Kim, Jin Hyo;Park, Jong Min;Choi, Geun-Hyoung;Park, Yun-Ki;Im, Geon-Jae;Kim, Doo-Ho;Kwon, Oh-Kyung
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.1
    • /
    • pp.53-57
    • /
    • 2013
  • In here, we investigated the quantitative analysis method of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) with liquid chromatography-mass/mass spectrometry (LC-MS/MS) or gas chromatography-MS. Two ways of clean-up process were investigated for LC-MS/MS instrumental analysis of IAA, but both a simple dilution and hydrophile-lipophile balance (HLB) solid phase extraction (SPE) were not met the optimal recovery rates for quantitative analysis. On the other hand, the clean-up method for GC-MS was finally optimized through HLB-SPE from 250-folds diluted sample and methylation with trimethylsilyl chloride in methanol for 4 h. The limit of detection for methyl ester of IAA and IBA were both 1.4 mg/L, and recovery rates showed 93-107% from the concentrated liquid fertilizer.

GC-MS Analysis of Ricinus communis, Pongamia pinnata, Datura metal, Azadirachta indica, Acalypha indica (leaf) Extract Using Methanol Extraction

  • J. Varshini premakumari;M. Job Gopinath
    • Mass Spectrometry Letters
    • /
    • v.14 no.3
    • /
    • pp.79-90
    • /
    • 2023
  • Natural goods, especially therapeutic plants, are abundant in the World. Because they have the ability to provide all humanity with countless advantages as a source of medicines, medicinal plants are presently receiving more attention than ever. These plants' therapeutic efficacy is based on bioactive phytochemical components that have clear physiological effects on the human body. The drying process is crucial for the preparation of plant materials prior to extraction since freshly harvested plant materials include active enzymes that create active components, intermediates, and metabolic processes. Many of the phytoconstituents may be extracted using the semi-polar solvent methanol. The goal of the current work is to use the GC-MS gas chromatography- mass spectrometry technology to identify the phytochemicals and review their biological activity. In methanol leaf extract, 5 phytocompounds were found in Ricinus communis, 5 phytocompounds in Pongamia pinnata, 12 phytocompounds in Datura metal, 7 phytocompounds in Azadirachta indica, 11 phytocompounds in Acalypha indica.

GC-MS and GC-FID Analysis of Citronella Oil Products for Indicator Ingredient Identification

  • Sumin Kang;Wooil Kim;Jin Wuk Lee;Sangwon Cha
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.160-165
    • /
    • 2023
  • Citronella oil, an essential oil extracted through steam distillation from the leaves and stems of Cymbopogon, is a natural complex substance (NCS) regulated by the Korean government for its use in insect repellents. The component ratios of NCSs like citronella oil vary due to differences in manufacturing processes and origins, presenting a challenge in identifying and quantifying these substances in consumer chemical products. This study analysed ten commercially available products of the most commonly used types of citronella oil, specifically Java and Ceylon types, using gas chromatography (GC)-mass spectrometry (MS) and GC with flame ionization detection (FID). Through chromatographic data, we aimed to determine the components that can qualitatively identify citronella oil and the indicator ingredients that can be used for content analysis.

Determination of more than 500 Pesticide Residues in Hen Eggs by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and Gas Chromatography-Tandem Mass Spectrometry (GC/MS/MS)

  • Golge, Ozgur;Liman, Turan;Kabak, Bulent
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.816-825
    • /
    • 2021
  • This study aims to validate a fast method of simultaneous analysis of 365 LCamenable and 142 GC-amenable pesticides in hen eggs by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), respectively, operating in multiple reaction monitoring (MRM) acquisition modes. The sample preparation was based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction. Key method performance parameters investigated were specificity, linearity, limit of quantification (LOQ), accuracy, precision and measurement uncertainty. The method was validated at two spiking levels (10 and 50 ㎍/kg), and good recoveries (70%-120%) and relative standard deviations (RSDs) (≤20) were achieved for 92.9% of LC-amenable and 86.6% of GC-amenable pesticide residues. The LOQs were ≤10 ㎍/kg for 94.2% of LC-amenable and 92.3% of GC-amenable pesticides. The validated method was further applied to 100 egg samples from caged hens, and none of the pesticides was quantified.

Comparison of the Fatty Acid Composition and Small Molecular Metabolites between Yanjin Blackbone Chicken and Piao Chicken Meat

  • Rong Jia;Wen Xun;Guozhou Liao;Yuan Yang;Guiying Wang
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.975-988
    • /
    • 2023
  • The fatty acid composition and small molecular metabolites in breast and leg meat of Yanjin blackbone chickens (YBC) and Piao chickens (PC) were detected by gas chromatography-mass spectrometry and liquid chromatography-quadrupole static field orbital trap mass spectrometry. Thirty-two fatty acids were detected, and the total fatty acid content of PC was significantly higher than that of YBC (p<0.05). Oleic acid, linoleic acid, palmitic acid, stearic acid, and arachidonic acid were the main fatty acids in the two chicken varieties, and the composition of fatty acids in the two varieties were mainly unsaturated fatty acids, being more than 61.10% of the total fatty acids. Meanwhile, 12 and 16 compounds were screened out from chicken legs and chicken breasts of YBC and PC, respectively, which had important contributions to the differences between groups.

Transformation of dissolved organic matter in a constructed wetland: A molecular-level composition analysis using pyrolysis-gas chromatography mass spectrometry

  • Park, Jongkwan;Choi, Mijin;Cho, Jaeweon;Chon, Kyongmi
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.390-396
    • /
    • 2018
  • This study investigated the transformation of dissolved organic matter (DOM) in a free-water surface flow constructed wetland. Pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) coupled with preparative high-performance liquid chromatography (prep-HPLC) was used to analyze the compositions of biopolymers (polysaccharides, amino sugars, proteins, polyhydroxy aromatics, lipids and lignin) in DOM according to the molecular size at three sampling points of the water flow: inflow, midflow, and outflow. The prep-HPLC results verified the decomposition of DOM through the decrease in the number of peaks from three to one in the chromatograms of the sampling points. The Py-GC/MS results for the degradable peaks indicated that biopolymers relating to polysaccharides and proteins gradually biodegraded with the water flow. On the other hand, the recalcitrant organic fraction (the remaining peak) in the outflow showed a relatively high concentration of aromatic compounds. Therefore, the ecological processes in the constructed wetland caused DOM to become more aromatic and homogeneous. This indicated that the constructed wetland can be an effective buffer area for releasing biochemically stable DOM, which has less influence on biological water quality indicators, e.g., biochemical oxygen demand, into an aquatic ecosystem.

Analysis of Mint Essential Oils from Jeju Island, Korea by Gas Chromatography-mass Spectrometry and Headspace-Gas Chromatography-mass Spectrometry (Gas Chromatography-mass Spectrometry와 Headspace-Gas Chromatography-mass Spectrometry를 이용한 제주산 민트 에센셜오일 성분 분석)

  • Hyun, Ho Bong;Boo, Kyung Hwan;Kang, Hye Rim;Kim Cho, Somi
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.175-181
    • /
    • 2015
  • Compositions of essential oils extracted from mint herb such as Mentha piperita, Mentha spicata, and Mentha ${\times}$ piperita var. citrate produced in Jeju were analyzed using gas chromatography-mass spectrometry (GC-MS) and headspace-GC-MS (HS-GC-MS). By the GC-MS analysis, 13 compounds were tentatively identified in Mentha piperita, Mentha spicata, and Mentha ${\times}$ piperita var. citrate, respectively. Peperitenone oxide, carvone, and linalool were detected as major compounds in Mentha piperita, in Mentha spicata, in Mentha ${\times}$ piperita var. citrate, respectively, based on the ratio of peak intensity in the total ion chromatogram. The greater number of compounds, including volatile alcohols and acetates were identified by HS-GC-MsS than by GC-MS in these all three essential oils. Similar patterns of composition were detected in both Mentha spicata and Mentha ${\times}$ piperita var. citrate by either one of GC-MS methods. However, in case of Mentha piperita, $\small{L}$-(-)-menthol, which was identified as the major compound by HS-GC-MS was detected in dramatically reduced quantity by GC-MS. Interestingly, we found that both linalyl acetate and linalool were identified as the dominant compounds in the essential oil of Mentha ${\times}$ piperita var. citrate.