Browse > Article
http://dx.doi.org/10.5478/MSL.2021.12.4.186

Separation of Light Rare-Earth Elements Using Gas-Pressurized Extraction Chromatography  

Kim, Namuk (Korea Atomic Energy Research Institute(KAERI))
Park, Jai Il (Korea Atomic Energy Research Institute(KAERI))
Um, Wooyong (Division of Advanced Nuclear Engineering(DANE), Pohang University of Science and Technology(Postech))
Kim, Jihye (Korea Atomic Energy Research Institute(KAERI))
Publication Information
Mass Spectrometry Letters / v.12, no.4, 2021 , pp. 186-191 More about this Journal
Abstract
A new method for chemical separation of light rare-earth elements (LREEs) using gas-pressurized extraction chromatography (GPEC) is described. GPEC is a microscale column chromatography system that features a constant flow of solvents, which is created by pressurized nitrogen gas. The separation column with a Teflon tubing was packed with LN resin. The proposed GPEC method facilitates production of lesser chemical wastes and faster separation owing to the use of low solvent volume compared to traditional column chromatography. We evaluated the separation of Ba, La, Ce, and Nd using various elution solvents. The column reproducibility of the proposed GPEC system ranged from 2.4% to 4.9% with RSDs of recoveries, and the column-to-column reproducibility ranged from 3.1% to 6.3% with RSDs of recoveries. The proposed technique is robust, and it can be useful for the fast separation of LREEs.
Keywords
light rare-earth elements; gas-pressurized extraction chromatography; column chromatography; separation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gergoric, M.; Ekberg, C.; Steenari, B.-M.; Retegan, T. J. Sustain. Metall. 2017, 3, 601, DOI: 10.1007/s40831-017-0117-5.   DOI
2 Laycock, A.; Coles, B.; Kreissig, K.; Rehkamper, M. J. Anal. At. Spectrom. 2016, 31, 297, DOI: 10.1039/C5JA00098J.   DOI
3 Chen, B.; He, M.; Zhang, H.; Jiang, Z.; Hu, B. Phys. Sci. Rev. 2017, 2, DOI: 10.1515/psr-2016-0057.   DOI
4 Ostapenko, V.; Vasiliev, A.; Lapshina, E.; Ermolaev, S.; Aliev, R.; Totskiy, Y.; Zhuikov, B.; Kalmykov, S. J. Radioanal. Nucl. Chem. 2015, 306, 707, DOI: 10.1007/s10967-015-4331-y.   DOI
5 Charalampides, G.; Vatalis, K. I.; Apostoplos, B.; Ploutarch-Nikolas, B. Procedia Eco. Financ. 2015, 24, 126, DOI: 10.1016/S2212-5671(15)00630-9.   DOI
6 Sekine, T.; Satio, N. Nature 1958, 181, 1464, DOI:10.1038/1811464a0.   DOI
7 Sommers, J.; Cummings, D.; Giglio, J.; Carney, K. J. Radioanal. Nucl. Chem. 2009, 282, 591, DOI: 10.1007/s10967-009-0210-8.   DOI
8 Kim, J. S.; Jeon, Y. S.; Park, S. D.; Han, S. H.; Kim, J. G. J. Nucl. Sci. Technol. 2007, 44, 1015, DOI: 10.1080/18811248.2007.9711341.   DOI
9 Navarro, J.; Zhao, F. Front. Energy Res. 2014, 2, 45, DOI:10.3389/fenrg.2014.00045.   DOI
10 McCulloch, M. T.; Wasserburg, G. J. Science 1978, 200, 1003, DOI: 10.1126/science.200.4345.1003.   DOI
11 Hirata, T. J. Mass Spectrom. Soc. Jpn. 2004, 52, 171, DOI: 10.5702/massspec.52.171.   DOI
12 Bradley, V.; Manard, B.; Roach, B.; Metzger, S.; Rogers, K.; Ticknor, B.; Wysor, S.; Brockman, J.; Hexel, C. Minerals 2020, 10, 55, DOI: 10.3390/min10010055.   DOI
13 Horwitz, E. P.; McAlister, D. R.; Bond, A. H.; Barrans, R. E.; Williamson, J. M. Appl. Radiat. Isot. 2005, 63, 23, DOI: 10.1016/j.apradiso.2005.02.005.   DOI
14 Horwitz, E. P.; Bloomquist, C. A. A. J. Inorg. Nucl. Chem. 1975, 37, 425, DOI: 10.1016/0022-1902(75)80350-2.   DOI
15 Omodara, L.; Pitkaaho, S.; Turpeinen, E.-M.; Saavalainen, P.; Oravisjarvi, K.; Keiski, R.L. J. Clean. Prod. 2019, 236, 117573, DOI: 10.1016/j.jclepro.2019.07.048.   DOI
16 de Regge, P.; Boden, R. J. Radioanal. Nucl. Chem. 1977, 35, 173, DOI: 10.1007/BF02518224.   DOI
17 Dry, D. E.; Bauer, E.; Petersen, L. A. J. Radioanal. Nucl. Chem. 2005, 263, 19, DOI: 10.1007/s10967-005-0005-5.   DOI
18 Dybczynski, R. J. Chromatogr. A 1970, 50, 487, DOI:10.1016/S0021-9673(00)97977-9.   DOI
19 Roelandts, I.; Duyckaerts, G.; Brunfelt, A. O. Anal. Chim. Acta 1974, 73, 141, DOI: 10.1016/S0003-2670(01)82815-4.   DOI
20 Strelow, F. W. E. Anal. Chem. 1980, 52, 2420, DOI:10.1021/ac50064a043.   DOI
21 Hirahara, Y.; Chang, Q.; Miyazaki, T.; Takahashi, T.; Kimura, J.-I. JAMSTEC Rep. Res. Dev. 2012, 15, 27, DOI: 10.5918/jamstecr.15.27.   DOI
22 Pin, C.; Zalduegui, J. S. Anal. Chim. Acta 1997, 339, 79, DOI: 10.1016/S0003-2670(96)00499-0.   DOI
23 Payne, R.; Schulte, S.; Douglas, M.; Friese, J.; Farmer, O.; Finn, E. J. Radioanal. Nucl. Chem. 2011, 287, 863, DOI: 10.1007/s10967-010-0838-4.   DOI
24 Rahman, R. O. A.; Ibrahium, H. A.; Hung, Y.-T. Water 2011, 3, 551, DOI: 10.3390/w3020551.   DOI
25 Kim, J. S.; Jeon, Y. S.; Park, S. D.; Ha, Y.-K.; Song, K. Nucl. Eng. Technol. 2015, 47, 924, DOI: 10.1016/j.net.2015.08.002.   DOI
26 Bera, S.; Sujatha, K.; Sivaraman, N.; Narasimhan, T. S. L. Radiochim. Acta 2019, 107, 685, DOI: 10.1515/ract-2018-3017.   DOI
27 Steeb, J.; Mertz, C.; Sandi, G.; Bass, D.; Graczyk, D.; Goldberg, M. J. Radioanal. Nucl. Chem. 2012, 292, 757, DOI: 10.1007/s10967-011-1492-1.   DOI
28 Mertz, C. J.; Kaminski, M. D.; Shkrob, I. A.; Kalensky, M.; Sullivan, V. S.; Tsai, Y. J. Radioanal. Nucl. Chem. 2015, 305, 199, DOI: 10.1007/s10967-015-4123-4.   DOI
29 Marie, C.; Hiscox, B.; Nash, K. L. Dalton Trans. 2012, 41, 1054, DOI: 10.1039/C1DT11534K.   DOI