• Title/Summary/Keyword: gas

Search Result 34,728, Processing Time 0.069 seconds

$CO_2$ Transport for CCS Application in Republic of Korea (이산화탄소 포집 및 저장 실용화를 위한 대한민국에서의 이산화탄소 수송)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.18-29
    • /
    • 2010
  • Offshore subsurface storage of $CO_2$ is regarded as one of the most promising options to response severe climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the offshore subsurface geological structure such as the depleted gas reservoir and deep sea saline aquifer. Since 2005, we have developed relevant technologies for marine geological storage of $CO_2$. Those technologies include possible storage site surveys and basic designs for $CO_2$ transport and storage processes. To design a reliable $CO_2$ marine geological storage system, we devised a hypothetical scenario and used a numerical simulation tool to study its detailed processes. The process of transport $CO_2$ from the onshore capture sites to the offshore storage sites can be simulated with a thermodynamic equation of state. Before going to main calculation of process design, we compared and analyzed the relevant equation of states. To evaluate the predictive accuracies of the examined equation of states, we compare the results of numerical calculations with experimental reference data. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_{2}O$, $SO_{\chi}$, $H_{2}S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. This paper analyzes the major design parameters that are useful for constructing onshore and offshore $CO_2$ transport systems. On the basis of a parametric study of the hypothetical scenario, we suggest relevant variation ranges for the design parameters, particularly the flow rate, diameter, temperature, and pressure.

Photocatalytic Oxidation of Arsenite Using Goethite and UVC-Lamp (침철석과 UVC-Lamp를 이용한 아비산염의 광촉매 산화)

  • Jeon, Ji-Hun;Kim, Seong-Hee;Cho, Hyen-Goo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.215-224
    • /
    • 2017
  • Arsenic (As) is known to be the most toxic element and frequently detected in groundwater environment. Inorganic As exists as arsenite [As(III)] and arsenate [As(V)] in reduced and oxidized environments, respectively. It has been reported that the toxicity of arsenite is much higher than that of arsenate and furthermore arsenite shows relatively higher mobility in aqueous environments. For this reason, there have been numerous researches on the process for oxidation of arsenite to arsenate to reduce the toxicity of arsenic. In particular, photooxidation has been considered to be simple, economical, and efficient to attain such goal. This study was conducted to evaluate the applicability of naturally-occurring goethite as a photocatalyst to substitute for $TiO_2$ which has been mostly used in the photooxidation processes so far. In addition, the effects of several factors on the overall performance of arsenite photocatalytic oxidation process were evaluated. The results show that the efficiency of the process was affected by total concentration of dissolved cations rather than by the kind of those cations and also the relatively higher pH conditions seemed to be more favorable to the process. In the case of coexistence of arsenite and arsenate, the removal tendency by adsorption onto goethite appeared to be different between arsenite and arsenate due to their different affinities with goethite, but any effect on the photocatalytic oxidation of arsenite was not observed. In terms of effect of humic acid on the process, it is likely that the higher concentration of humic acid reduced the overall performance of the arsenite photocatalytic oxidation as a result of competing interaction of activated oxygen species, such as hydroxyl and superoxide radicals, with arsenite and humic acid. In addition, it is revealed that the injection of oxygen gas improved the process because oxygen contributes to arsenite oxidation as an electron acceptor. Based on the results of the study, consequently, the photocatalytic oxidation of aqueous arsenite using goethite seems to be greatly feasible with the optimization of process.

Development of Economic Culture System Using Wastewater for Microalgae in Winter Season (폐수를 이용한 겨울철 경제적 미세조류 배양 시스템의 개발)

  • Lee, Sang-Ah;Lee, Changsoo;Lee, Seung-Hoon;An, Kwang-Guk;Oh, Hee-Mock;Kim, Hee-Sik;Ahn, Chi-Yong
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.1
    • /
    • pp.58-67
    • /
    • 2014
  • The outdoor mass cultivation is not possible for microalgae in Korea all year round, due to cold winter season. It is not easy to maintain proper level of productivity of microalgae even in winter. To prevent a drastic decrease of temperature in a greenhouse, two layers were covered additionally, inside the original plastic layer of the greenhouse. The middle layer was made up of plastic and the inner layer, of non-woven fabric. Acrylic transparent bioreactors were constructed to get more sunlight, not only from the upper side but also from the lateral and bottom directions. In winter at freezing temperatures, six different culture conditions were compared in the triply covered, insulated greenhouse. Wastewater after anaerobic digestion was used for the cultivation of microalgae to minimize the production cost. Water temperature in the bioreactors remained above $10^{\circ}C$ on average, even without any external heating system, proving that the triple-layered greenhouse is effective in keeping heat. Algal biomass reached to 0.37g $L^{-1}$ with the highest temperature, in the experimental group of light-reflection board at the bottom, with nitrogen and phosphorus removal rate of 92% and 99%, respectively. When fatty acid composition was analyzed using gas-chromatography, linoleate (C18 : 3n3) occupied the highest proportion up to 61%, in the all experiment groups. Chemical oxygen demand (COD), however, did not decrease during the cultivation, but rather increased. Although the algal biomass productivity was not comparable to warm seasons, it was possible to maintain water temperature for algae cultivation even in the coldest season, at the minimum cost.

A Study on the Characteristic Trace Organic Pollutants in the Industrial Wastewater (산업폐수중 미량유기오염물질 배출 특성)

  • Chung, Y.H.;Kim, S.C.;Shin, S.K.;Kang, I.G.;Lee, J.I.;Lee, W.S.;Lee, J.B.
    • Analytical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.62-72
    • /
    • 1998
  • This study was performed to characterize the trace organic pollutants in the industrial wastewater and to establish the database of the trace organic pollutants. The four manufacturing industries, which are refined petroleum, industrial chemicals, rubber & plastics and fabricated metals, were surveyed. The wastewater and discharging water of these 30 factories are analyzed to characterize the trace organic pollutants. In industrial chemicals, the kinds of products and organic pollutants are very various. Therefore to select the characteristic organic pollutants in this categories are also very difficult. In industrial chemicals, the gas chromatograpic peak patterns of wastewater are represented the various type according to their products, therefore the typical patterns of the characteristic organic pollutants could not be obtained because the kinds of manufactured goods and organic pollutants are very various. In refined petroleum, the effluent is discharged in the distillatory process of atmosphere pressure and contained the saturated hydrocarbons, phenol compounds, benzene compounds and naphtalene compounds. The saturated hydrocarbons peaks from $C_{15}$ to $C_{35}$ are represented the typical oil patterns by the uniform intervals therefore the peak can be easily distinguished. In rubber & plastics, the wastewater is discharged in the washing process which contains the additives. The problem of wastewater is not serious because the manufacturing process is not produced the effluent or the produced cooling water is recycled in that process.

  • PDF

Evaluation of confidence for measurement of VOCs in indoor air (실내공기질 VOCs 측정의 신뢰도 평가를 위한 연구)

  • Kim, Myoung Ock;Kim, Young Lan;Hong, Suk Young;Heo, Gwi Suk;Lim, Hyun Woo;Choe, Seoung Hun;Lee, Won Suk;Han, Jin Seok;Kim, Kum Hee
    • Analytical Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.165-173
    • /
    • 2013
  • To establishment of PT Program for Indoor air quality field that manufacture of confidential development PTMs (proficiency testing materials) and examined of proficiency testing evaluation included sampling process whether or not that is valid. Confirmation of homogeneity and stability of PTMs prepared. PTMs were confirmed to be homogeneous enough to be used as proficiency testing materials since withinbottle homogeneities of the RMs were lower than 0.3 times of targeted standard deviation of proficiency testing. The result of this study showed that the Robust RSD of proficiency testing for VOCs (volatile organic compounds) appeared 23~43% in concentration of 50~320 ${\mu}g/m^3$ for Method A(Distribution by adsorption in Tenax-tube of VOCs), but less 13~42% in concentration of 200~1200 ${\mu}g/m^3$, 16~31% in concentration of 100~450 ${\mu}g/m^3$ for Method B (distribution by VOCs of gas phase in 10L Tedalr bag), C (directly sampling of cylinder with high pressure) respectively. The result of this study showed that method C with sampling is most adequate to the proficiency testing for VOCs in indoor air.

Innovation Technology Development & Commercialization Promotion of R&D Performance to Domestic Renewable Energy (신재생에너지 기술혁신 개발과 R&D성과 사업화 촉진 방안)

  • Lee, Yong-Seok;Rho, Do-Hwan
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.4
    • /
    • pp.788-818
    • /
    • 2009
  • Renewable energy refers to solar energy, biomass energy, hydrogen energy, wind power, fuel cell, coal liquefaction and vaporization, marine energy, waste energy, and liquidity fuel made out of byproduct of geothermal heat, hydrogen and coal; it excludes energy based on coal, oil, nuclear energy and natural gas. Developed countries have recognized the importance of these energies and thus have set the mid to long term plans to develop and commercialize the technology and supported them with drastic political and financial measures. Considering the growing recognition to the field, it is necessary to analysis up-to-now achievement of the government's related projects, in the standards of type of renewable energy, management of sectional goals, and its commercialization. Korean government is chiefly following suit the USA and British policies of developing and distributing renewable energy. However, unlike Japan which is in the lead role in solar rays industry, it still lacks in state-directed support, participation of enterprises and social recognition. The research regarding renewable energy has mainly examinedthe state of supply of each technology and suitability of specific region for applying the technology. The evaluation shows that the research has been focused on supply and demand of renewable as well as general energy and solution for the enhancement of supply capacity in certain area. However, in-depth study for commercialization and the increase of capacity in industry followed by development of the technology is still inadequate. 'Cost-benefit model for each energy source' is used in analysis of technology development of renewable energy and quantitative and macro economical effects of its commercialization in order to foresee following expand in related industries and increase in added value. First, Investment on the renewable energy technology development is in direct proportion both to the product and growth, but product shows slightly higher index under the same amount of R&D investment than growth. It indicates that advance in technology greatly influences the final product, the energy growth. Moreover, while R&D investment on renewable energy product as well as the government funds included in the investment have proportionate influence on the renewable energy growth, private investment in the total amount invested has reciprocal influence. This statistic shows that research and development is mainly driven by government funds rather than private investment. Finally, while R&D investment on renewable energy growth affects proportionately, government funds and private investment shows no direct relations, which indicates that the effects of research and development on renewable energy do not affect government funds or private investment. All of the results signify that although it is important to have government policy in technology development and commercialization, private investment and active participation of enterprises are the key to the success in the industry.

  • PDF

Effect of Reaction Factors on the Properties of Complex Oxide Powder Produced by Spray Roasting Process (분무배소법에 의해 생성되는 복합산화물 분말들의 특성에 미치는 반응인자들의 영향)

  • 유재근;이성수;박희범;안주삼;남용현;손진군
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.16-27
    • /
    • 2000
  • In order to produce raw material powder of advanced magnetic material by spray roasting process, newly modified spray roasting system was developed in this work. In this spray roasting system, raw material solution was effectively atomized and sprayed into the reaction furnace. Also, uniform temperature distribution inside reaction furnace made thermal decomposition process fully completed, and produced powder was effectively collected in cyclone and bag filter. This system equipped with apparatus which can purify hazard produced gas. In this study complex acid solution was prepared by dissolution of mill scale and ferro-Mn into the acid solution, and the pH of this complex acid solution was controlled about to 4. It was conformed that mill scale and ferro-Mn containing a lot of impurities such as $SiO_2$, P and Al could be used as raw material by reducing the impurities content of complex acid solution below 20 ppm. Complex oxide powder of Fe-Mn system was produced by spraying purified complex acid solution into the spray roaster through nozzle, and the variations of produced powder characters were studied by changing he reaction conditions such as reaction temperature, the injection velocity of solution and air, nozzle tip size and concentration of solution. The morphology of produced powder had spherical shape under the most experimental conditions, and concentration of solution. The morphology of produced powder has spherical shape under the most experimental conditions, and the composition and the particle size distribution were almost uniform, which tells the excellence of this spray roasting system. The grain size of most produced powder was below 100 nm. From the above results, it will be possible to produce ultra fine oxide powder from the chloride of Fe, Mn, Ni, Cu and rare earth by using this spray roasting system, and also to produce ultra fine pure metal powder by changing reaction atmosphere.

  • PDF

Effects of Dietary Mineral Extract from Granite on the Performance of Broiler Chickens and Ammonia Production from the Litter (화강암 추출 활성 광물질의 사료 내 첨가가 육계의 생산성과 깔짚 암모니아 발생에 미치는 영향)

  • Cho J. H.;Jung B. Y.;Paik I. K.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.1
    • /
    • pp.43-48
    • /
    • 2005
  • An experiment was conducted to investigate the effects of mineral extract from granite on the performance, ammonia production from the litter, components of blood, Newcastle Disease (ND) titer and intestinal microflora in broiler chickens. Nine hundred sixty one-day-old broiler chickens (Ross) were assigned to five treatments: C; control, Zeolite; control + zeolite 1$\%$, AM10: control + active mineral water $10\%$ adsorbed zeolite $1\%$, AM20; control + active mineral water $20\%$ adsorbed zeolite $1\%$ and AM30; control + active mineral water $30\%$ adsorbed zeolite $1\%$. Each treatment consisted of four replicates with 48 broiler chicks for feeding trial. In order to test the effect of ND vaccine on the components of blood, ND titer and intestinal microflora, a separate group of 48 broiler chicks were assigned to the same 5 treatment as the feeding trial plus one negative control (No ND vaccine). Weight gain, feed intake, feed conversion and mortality were not significantly affected by dietary treatments but AM30 tended to be higher than other treatments in weight gain and feed intake, especially during later period (4 to 5 weeks of age). Ammonia production from the litter of AM30 treatment was significantly (P<0.01) lower than the control. Components of blood and ND titer in serum of broiler chickens were not significantly affected by treatments but MCHC (mean corpuscular hemoglobin concentration) of blood was significantly lower (P<0.05) in Zeolite treatment compared to others. The colony forming unit (CFU) of Clostridium perfringens in the small intestinal content of all zeolite and AM treated groups was significantly (P<0.01) lower than the control while the CFU of Escherichia coli was not significantly affected. The CFU of Lactobacilli in AM30 treatment was significantly (P<0.05) higher than the control. In conclusion, dietary supplement of active mineral water adsorbed to zeolite at $30\%$ level (AM30) tended to improve growth performance of broiler chickens and significantly reduced ammonia production from the litter. It also significantly increased CFU of intestinal Lactobacilli.

Experiences with Emergency Percutaneous Cardiopulmonary Support in In-hospital Cardiac Arrest or Cardiogenic Shock due to the Ischemic Heart Disease (허혈성 심질환으로 인해 병원 내에서 발생한 심정지 혹은 심정지 혹은 심인성 쇼크에 있어서의 경피적 심폐 보조장치의 치료 경험)

  • Rhee Il;Kwon Sung-Uk;Cho Sung Woo;Gwon Hyeon-Cheol;Lee Young Tak;Park Pyo Won;Park Kay-Hyun;Lee Sang Hoon;Sung Kiick
    • Journal of Chest Surgery
    • /
    • v.39 no.3 s.260
    • /
    • pp.201-207
    • /
    • 2006
  • Background: Percutaneous cardiopulmonary support (PCPS) provides passive support of gas exchange and perfusion, allowing the use of other methods of care for organ recovery, and saves lives of patients with severe cardiopulmonary failure in a wide variety of clinical settings with a minimal risk of bleeding and need for chest re~ exploration. We summarized a single center's experiences with PCPS in patients with cardiogenic shock or cardiac arrest due to the ischemic heart disease. Material and Method: Among the 20 consecutive patients with cardiogenic shock or cardiac arrest from May 1999 to June 2005, Biopump (Medtronic, Inc, Minneapolis, MN) was used in 7 patients and the self-priming, heparin-coated circuit of EBS (Terumo, Japan) was applied to remaining 13 patients. Most of cannulations were performed percutaneously via femoral arteries and veins. The long venous cannulas of DLP (Medtronic inc. Minneapolis, MN) or the RMI (Edwards's lifescience LLC, Irvine, CA) were used with the arterial cannulae from 17 Fr to 21 Fr and the venous cannula from 21 Fr to 28 Fr. Result: The 20 consecutive patients who were severely compromised and received PCPS for the purpose of resuscitation were comprised of 13 cardiac arrests and 7 cardiogenic shocks in which by-pass surgery was performed in 11 patients and 9 ongoing PCls under the cardiopulmonary support. The mean support time on the PCPS was 38$\pm$42 hours. Of the 20 patients implanted with PCPS, 11 patients ($55\%$) have had the PCPS removed successfully; overall, 8 of these patients ($40\%$) were discharged from the hospital in an average surviving time for 27$\pm$17 days after removing the PCPS and survived well with 31$\pm$30 months of follow-up after the procedure. Conclusion: The use of PCPS appears to provide the hemodynamic restoration, allowing the survival of patients in cardiac arrest or cardiogenic shock who would otherwise not survive, and patients receiving PCPS had a relatively long-term survival.

Permeation and Permselectivity variation of $O_2$, $CF_4$ and $SF_6$ through Polymeric Hollow Fiber Membranes (고분자 분리막 재질 변화에 따른 $O_2$, $CF_4$, $SF_6$ 투과도 및 투과선택도 특성 변화에 대한 연구)

  • Lee, Hyun-Jung;Lee, Min-Woo;Lee, Hyun-Kyung;Lee, Sang-Hyup
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • In this study, we tried to observe the permeation on the single $O_2$, $CF_4$ and $SF_6$ gas using a PSF (polysulfone), PC (tetra-bromo polycarbonate) and PI (polyimide) hollow fiber membranes. We also observed the permselectivity on the $O_2/SF_6$ and $CF_4/SF_6$. According to the results of single gases permeation for different pressures, PSF membrane has the highest $O_2$ permeation of 37.5 GPU and PC membrane has the highest $SF_6$ permeation of 2.7 GPU and the highest $CF_4$ permeation of 2.5 GPU at 1.1 MPa. According to the results of single gases permeation for different temperatures, PSF membrane has the highest permeation of $O_2$ at $45^{\circ}C$ and PC membrane has the highest permeation of $SF_6$ and $CF_4$ at $25^{\circ}C$. From the result of $O_2/SF_6$ and $CF_4/SF_6$ permselectivity for different pressures and temperature, the highest permeation and the lowest permselectivity were observed in the PSF and PC membrane. On the contrary, the lowest permeation and the highest permselectivity was observed in the PI membrane.