• Title/Summary/Keyword: gas

Search Result 34,545, Processing Time 0.054 seconds

Evaluation of Service Life of Low Pressure LP-Gas Regulators for Home Use (가정용 LPG 저압조정기의 사용수명 평가)

  • Kim Young-Gyu;Kim Pil-Jong;Cho Seok-Beom;Kwon Boo-Kil
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.44-48
    • /
    • 2005
  • Experimental works were carried out to evaluate the service life of low pressure LPG regulators for domestic use. Experimental results showed that the operating pressure of regulators used for 7 years notably deviated from the standard value of the adjusting pressure and the lock-up pressure. Thus, it is estimated that low pressure LPG regulators have approximately 6 years of service life.

  • PDF

Temperature Distributions inside a Space Heater for Greenhouse (I) - Temperature Characteristics with Heating Oil - (시설원예용 온풍난방기내의 온도분포에 관한 연구 (I) - 난방유 사용시 온도특성 -)

  • 서정덕;김종진;최규성;신창식;노수영
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.335-342
    • /
    • 1999
  • Air and flue gas temperature distributions in the space heater for greenhouse were measured to develop a thermal design technology for the space heater. Also, the characteristics of the fan supplying air to the space heater were investigated. The temperature of the flue gas inside the flue gas tube was linearly decreased as the lenght of than those of the flue gas with the oxygen concentration of 8.25% at the last exit of the second flue gas tube. Thus, the operating efficiency of the space heater could be increased with low air ratio decreased exhausting gas temperature and saved the energy consumption with decreased excess air flow. The temperature of the air supplied by fan was increased slowly around the first flue gas tube, meanwhile, increased sharply around the second flue gas tube due to large LMTD (Logarithmic Mean Temperature Difference) at the first flue gas tube than which of the second flue gas tube.

  • PDF

Analysis of Hydrogen Accident in Korea (국내 수소사고사례 분석)

  • Jo, Young-Do;Tak, Song-Su;Choi, Kyoung-Suhk;Lee, Jong Rark;Park, Kyo-Shik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.82-87
    • /
    • 2004
  • Hydrogen is considered to be the most important future energy carrier in many applications reducing greenhouse gas emissions significantly. To be applicable as energy carrier the safety issues associated with hydrogen applications needs to be investigated and fully understood. In order to analyze the risks associated with hydrogen applications, accidents associated with hydrogen in Korea from 1963 to 2002 have been analysed in this work. From analysis of accidents, we propose the necessity of research on hydrogen releases, dispersion in air, and explosion due to high hazardous of hydrogen.

A Study on the Unified Molding of a Portable Cosmetic Chest Using Gas-Assisted Injection Molding (가스사출성형을 이용한 휴대용 화장품 보관함의 일체화 성형 연구)

  • Lee, Ho-Sang;Ryu, Yeon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.772-777
    • /
    • 2001
  • The gas-assisted injection molding process is often perceived to be unpredictable, because of the extreme sensitivity of the gas. Since a slight change in design or process parameters can significantly change the resulting gas penetration, few designers and molders have the level of experience with the new gas-assisted injection molding process required for the development of new parts. This paper is concerned with the unified molding for a thick cosmetic chest by using gas-assisted injection molding. CAE analysis was carried out to design the part and the gas channel without inducing sink marks. And based on the part weight measurement, the processing parameters to control gas penetration percentage were chosen through the method of design of experiments. A thick cosmetic chest was successfully produced using the gas assist technology. The sink mark issue associated with the conventional injection molded parts was resolved. Weight savings and cycle-time reduction were also achieved.

  • PDF

Effect of $N_2$ back shielding gas on the property change of GTA weldment (질소 이면보호가스 적용성에 관한 연구)

  • 백광기;안병식
    • Journal of Welding and Joining
    • /
    • v.5 no.4
    • /
    • pp.12-21
    • /
    • 1987
  • To investigate the suitability of nitrogen gas as an internal purging gas, various properties of GTA welded joints of duplex, 316L stainless steel, Cu-Ni alloy pipe using nitrogen purging gas were evaluated with reference to onew purged with argon gas. Mechanical properties evaluated by the tensile, bending test, and hardness value of welded joints with nitrogen gas purging did not show any difference those with argon gas. General and local corrosion rates of each welded joint prepared by nitrogen gas purging also showed no difference with those prepared by argon gas. Based on the present test results it is confirmed that nitrogen is a suitable purging gas for GTA welding of stainless steels and nonferrous piping systems, which can be used at lower cost instead of argon.

  • PDF

A Study on the Unified Molding for a Box Shaped Thick Part Using Gas-Assisted Injection Molding (가스사출성형을 이용한 두꺼운 박스형 제품의 일체화 성형 연구)

  • 이호상
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.402-410
    • /
    • 2001
  • The gas-assisted injection molding process is often perceived to be unpredictable, because of the extreme sensitivity of the gas. Since a slight change in design or process parameters can significantly change the resulting gas penetration, few designers and molders have the level of experience with the new gas-assisted injection molding process required for the development of new parts. This paper is concerned with the unified molding for a thick cosmetic chest by using gas-assisted injection molding. CAE analysis was carried out to design the part and the gas channel without inducing sink marks. And based on the part weight measurement, the processing parameters to control gas penetration percentage were chosen through the method of design of experiments. A thick cosmetic chest was successfully produced using the gas assist technology. The sink mark issue associated with the conventional injection molded parts was resolved. Weight savings and cycle-time reduction were also achieved.

  • PDF

A Study on thermal cutting characteristics of hydrogen-oxygen mixed gas (수소-산소 혼합가스의 열절단 특성 연구)

  • Kim, Nam-In;Jang, Yong-Won;Jeong, Jun-Sik;Lee, Jeong-Su
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.8-10
    • /
    • 2007
  • In recent years, hydrogen-oxygen mixed gas generated by electrically dissociating water has been proposed as alternative cutting fuel. The mixed gas consists of a hydrogen-oxygen mixed gas in the mixture ratio of 2:1. And gas has some merits as cutting quality and speed compared with existing gas cutting process. Because main source of mixed gas is water, mixed gas is environmental-friendly clean fuel. The purpose of the present paper is to investigate cutting characteristics and optimum cutting parameters of mixed gas, The effect of cutting parameter on the cutting characteristics of mixed gas is also investigated as compared to existing gas cutting process.

  • PDF

The use of liquefied petroleum gas (lpg) and natural gas in gas turbine jet engines

  • Koc, Ibrahim
    • Advances in Energy Research
    • /
    • v.3 no.1
    • /
    • pp.31-43
    • /
    • 2015
  • This paper compares the performance of JP-8(Jet Propellant) fuel and liquefied petroleum gas (LPG) and natural gas in the F110 GE100 jet engine. The cost of natural gas usage in gas turbine engines is lower than JP-8 and LPG. LPG cost is more than JP-8. LPG volume is bigger than JP-8 in the same flight conditions. Fuel tank should be cryogenic for using natural gas in the aircraft. Cost and weight of the cryogenic tanks are bigger. Cryogenic tanks decrease the move capability of the aircraft. The use of jet propellant (JP) is the best in available application for F110 GE 100 jet engine.

Estimation of Exhaust Gas Recirculation using In-Cylinder Residual Gas Fraction in an SI Engine (잔류가스 추정 기법을 이용한 EGR율의 예측)

  • 김득상;김성철;황승환;조용석;엄인용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.55-60
    • /
    • 2004
  • Residual gas acts as a diluent which results in reducing the in-cylinder temperature as well as the flame speed, significantly affecting fuel economy, NOx emissions and combustion stability. Therefore it is important to determine the residual gas fraction as a function of the engine operating parameters accurately. However, the determination of the residual gas fraction is very sophisticated due to the unsteady state of induction and exhaust process. There has been little work toward the development of a generally applicable model for quantitative predictions of residual gas fraction. In this paper, a simple model for calculating the residual gas fraction in SI engines was suggested. The amount of fresh air was evaluated through AFR and fuel consumption. After this, from the intake temperature and pressure, the amount of total cylinder-charging gas was estimated. The residual gas fraction was derived by comparing the total charging and fresh air. This results coincide with measured EGR value very well.

The establishment of R&D management system for Gas Plant R&D Center (가스플랜트 사업단에서 연구관리스템 구축)

  • Hwang, Seong Ha;Yoo, Sun Il;Nam, Tae Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-29
    • /
    • 2008
  • Traditionally gas plant R&D has had a world-wide weak position in terms of high technology. Especially System engineering did not exactly apply to gas plant construction. So, Gas Plant R&D Center is determined to make the establishment of the system engineering for the standard of gas plant. Gas Plant R&D Center has two projects. Firstly, the establishment of the R&D management system. Secondly, the system engineering which is included in the VE concept of EPC parts. But Gas Plant R&D Center exists in the particular conditions for successful development of the new process and core equipments. Now we will describe the establishment of R&D management system and particular conditions(Risk Conditions) for gas plant.

  • PDF