• 제목/요약/키워드: gap measurement

검색결과 699건 처리시간 0.032초

중국 성인여성의 직접계측과 3D Body scanning 치수 비교 연구 (Comparison of Size between direct-measurement and 3D body scanning)

  • 차수정
    • 패션비즈니스
    • /
    • 제16권1호
    • /
    • pp.150-159
    • /
    • 2012
  • This study intend to analyze differences between 3D body scanning sizes and direct measurement sizes of same subjects. The subjects of study are female students of university in China. 3D data analyze as a 3D Body Measurement Soft System. The conclusion found is as below: In case of circumferences, error between direct-measurement size and 3D body scanning size is from 4.9mm to 62.2mm. The neck circumference size of directmeasurement is bigger than 3D body scanning size. The height error range is from 0.6mm to 51mm. Height of underbust, waist and hip are that direct-measurement sizes are higher than 3D body scanning sizes. Gap of width is from 3.8mm to 21.9mm. The gap range is too narrow relatively to others. Only direct-measurement size of neck width is wider than 3D body scanning size. Error range of length is from 0.3mm to 41.8mm. 3D body scanning sizes of lateral neck to waistline, upperarm length, arm length, neck shoulder point to breast point, shoulder center point to breast point, lateral shoulder to breast point are longer than direct-measurement sizes. They have a negative margin of error. I intend to set up same measurement point between direct-measurement and 3D body scanning but they have some errors because direct-measurement point is applied by a person. 3D body scanning measurement point is settled by automatic system. A measurement point of direct-measurement and 3D body scanning isn't unite. So we need to make a standard of setting up measurement points.

APAMAT을 이용한 실험에서 공기층 삽입이 차음재의 투과 손실에 미치는 영향 (Effect of Air Gap Insertion on Transmission Loss of Sound Barrier in APAMAT Measurement)

  • 신재성;강연준;성명호;김현석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.1180-1184
    • /
    • 2001
  • This paper presents the effect of air gap insertion on the results in measuring the transmission loss of sound barrier by using APAMAT. The measured results show that air gap insertion improves transmission loss as by two-room method or intensity method. The measured results are compared with the predicted transmission loss using MATLAB GUI program based on the transfer matrix method. Predicted results were found to be in reasonable agreement with measured results.

  • PDF

Dynamic Magnetic Field Measurement in the Air Gap of Magnetic Bearings Based on FBG-GMM Sensor

  • Jiayi, Liu;Zude, Zhou;Guoping, Ding;Huaqiang, Wang
    • Journal of the Optical Society of Korea
    • /
    • 제19권6호
    • /
    • pp.575-585
    • /
    • 2015
  • Magnetic field in magnetic bearings is the physical medium to realize magnetic levitation, the distribution of the magnetic field determines the operating performance of magnetic bearings. In this paper, a thin-slice Fiber Bragg Grating-Giant Magnetostrictive Material magnetic sensor used for the air gap of magnetic bearings was proposed and tested in the condition of dynamic magnetic field. The static property of the sensor was calibrated and a polynomial curve was fitted to describe the performance of the sensor. Measurement of dynamic magnetic field with different frequencies in magnetic bearings was implemented. Comparing with the finite element simulations, the results showed the DC component of the magnetic field was detected by the sensor and error was less than 5.87%.

Gap 센서의 열 특성에 관한 연구 (Experimental Study on Thermal Characteristics for Gap Sensor)

  • 구재량;이두영;김두영;이대성;김성휘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.790-793
    • /
    • 2005
  • Gap Sensor is widely used to measure vibration in power plant. In general the result of the vibration measurement may have special error due to two thermal characteristics of gap sensor such as sensitivity shift and zero shift. Thermal sensitivity is change of linearity and thermal zero shift is chang of offset. It is investigated two thermal characteristics for Rap son or in this paper.

  • PDF

표면 탄성파 장치에 기반한 무선 간극 센서 (Wireless Gap Sensor Based on Surface Acoustic Wave Device)

  • 김재근;박경수;박노철;박영필;이택주;임수철;엄원석
    • 한국소음진동공학회논문집
    • /
    • 제21권3호
    • /
    • pp.206-211
    • /
    • 2011
  • In this paper, we report a high-precision wireless gap sensor based on a surface acoustic wave (SAW) device. The sensing element is a parallel-plate capacitor whose dimensions are $3{\times}3\;mm^2$, and is attached to the SAW device as an external load. The SAW device, equipped with an RF antenna, serves simultaneously as a signal conditioner and an RF transponder. The center frequency of the SAW device is 450 MHz. The wireless gap sensor prototype exhibits a resolution of 100 nm and a sensing range of $50{\mu}m$. The proposed sensor system can be used for remote, high-precision gap measurement in hard-to-reach environments.

침단간극의 불꽃 전압특성 (The Spark Voltage Characteristics of Needle Gaps)

  • 정성계
    • 전기의세계
    • /
    • 제26권3호
    • /
    • pp.69-72
    • /
    • 1977
  • The effects of sharpness of needle electode on the spark voltage in needle-plane and needle-needle spark gaps at atmospheric pressure was investigated experimentaly in this paper. As the sharpness of needle electrode increases, the spark voltage increases, and the rate of increase is greater in needle-needle electrode than in needle-plane gap. the effects of sharpness is greater in small gap length. These characteristics can be explained by the electric field strength at the needle tip depending on the sharpness of needle, electro-static capacity between the electrodes, and the polarity effect in needle-plane gap. These experimental results will be able to play an important roles on the design of needle-needle gap as high voltage measurement devices and of needle-plane gap as high voltage rectifier equipments.

  • PDF

Random Forest Model for Silicon-to-SPICE Gap and FinFET Design Attribute Identification

  • Won, Hyosig;Shimazu, Katsuhiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권5호
    • /
    • pp.358-365
    • /
    • 2016
  • We propose a novel application of random forest, a machine learning-based general classification algorithm, to analyze the influence of design attributes on the silicon-to-SPICE (S2S) gap. To improve modeling accuracy, we introduce magnification of learning data as well as randomization for the counting of design attributes to be used for each tree in the forest. From the automatically generated decision trees, we can extract the so-called importance and impact indices, which identify the most significant design attributes determining the S2S gap. We apply the proposed method to actual silicon data, and observe that the identified design attributes show a clear trend in the S2S gap. We finally unveil 10nm key fin-shaped field effect transistor (FinFET) structures that result in a large S2S gap using the measurement data from 10nm test vehicles specialized for model-hardware correlation.

내부 공동과 간극이 종 음향에 미치는 영향에 대한 실험적 연구 (An Experimental Study on the Influence of the Internal Cavity and Gap on the Bell Acoustics)

  • 정원태;강연준;김석현
    • 한국소음진동공학회논문집
    • /
    • 제20권9호
    • /
    • pp.822-827
    • /
    • 2010
  • In this study, it is experimentally investigated how bell acoustics are influenced by the internal cavity of the bell and the gap between the bell bottom and the floor. Acoustic transmission function and natural frequency of a test bell are measured and analysed. Experimental study is conducted to evaluated how the resonance effect influences the bell sound and how the bell sound is different according to the striking condition and the measurement direction. Acoustic resonance frequency of the cavity-gap system is predicted by boundary element analysis using SYSNOIS and the validity of the predicted result is verified by experiment. The result of the study could be applied to determine the optimal gap size which makes the bell sound strong and long.