• Title/Summary/Keyword: gap length

Search Result 657, Processing Time 0.028 seconds

Preliminery study of waveform control in ERW process (전기저항용접의 파형제어에 관한 기초연구)

  • Cho, Min-Hyun;Kim, Dong-Chul;Kang, Mun-Jin;Eun, Seung-Soo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.32-32
    • /
    • 2009
  • Electric Resistance Welding (ERW) process is the most efficient process to manufacture the linepipe. To develop the high performance ERW linepipe using the high strength and the high alloy steels, the modulation of input power waveform such as sinusoidal waveform is introduced because the conventional ERW technology is not sufficient enough to produce the high quality linepipe due to its strength and high alloy contents (high Ceq). In this article, the material used for the experiment was API X60 with 8.2mm thickness, and ERW simulator at POSCO was used to develop a waveform control system for the power modulation. The frequency of power modulation was varied from 50Hz to 150Hz with the fixed amplitude of ${\pm}2%$ power. The non-modulated power input and the modulated power input cases are conducted to demonstrate the variation of the narrow gap length and the arcing frequency due to power modulation. From results of the non-modulated power input case, the excessive power causes the longer narrow gap length and the low arcing frequency due to the large heat input and the strong electro magnetic force that increase the weld defect. On the contrary, the small narrow gap length and the high arcing frequency reduce the weld defect. After modulating the power input with 50Hz and 100Hz at the fixed power, the arcing frequency increases, but the narrow gap length does not change much. The high arcing frequency prevents the formation of weld defect because the sweeping frequently cleans the oxides on the narrow gap edges. As a result, the manufacturing window can be expanded by the power modulation that provides the stable ERW process for the quality improvement of the linepipe made from the high strength/high alloy steels.

  • PDF

Experimental Study of DC Coronas in Point-to-Plane Short Gap (지간적 직류Corona의 실질적 검토)

  • 오철한;이성만
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.5
    • /
    • pp.157-163
    • /
    • 1983
  • Positive and negative coronas in point-to-plane short gap have been investigated with the variations of point radius and gap length. Mainly the onset potentials and current pulses under various conditions were measured with a 70 MHz C.R.O. and a precise-controllable D.C. power supply. In the case of negative corona, the Trichel pulse corona, glow corona and spark regions were distinguished apparently and the critical gap lengths between them were also found clearly. In the case of positive corona, there are streamer corona, spark regions and the critical gap length between them, too. The current pulse forms of Trichel pulse corona of negative and streamer pulse corona of positive are similar in rising time, peak-to-peak time and pulse width. The glow corona current shows D.C. component in form.

  • PDF

Effect of trunk length on the flow around a fir tree

  • Lee, Jin-Pyung;Lee, Eui-Jae;Lee, Sang-Joon
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.69-82
    • /
    • 2014
  • Flow around a small white fir tree was investigated with varying the length of the bottom trunk (hereafter referred to as bottom gap). The velocity fields around the tree, which was placed in a closed-type wind tunnel test section, were quantitatively measured using particle image velocimetry (PIV) technique. Three different flow regions are observed behind the tree due to the bottom gap effect. Each flow region exhibits a different flow structure as a function of the bottom gap ratio. Depending on the gap ratio, the aerodynamic porosity of the tree changes and the different turbulence structure is induced. As the gap ratio increases, the maximum turbulence intensity is increased as well. However, the location of the local maximum turbulence intensity is nearly invariant. These changes in the flow and turbulence structures around a tree due to the bottom gap variation significantly affect the shelter effect of the tree. The wind-speed reduction is increased and the height of the maximum wind-speed reduction is decreased, as the gap ratio decreases.

A Study on the Development of Ignition Trans applied to Gas Boiler (가스보일러에 적용되는 점화 트랜스 개발에 관한 연구)

  • Lee, Ho-kyun;Kim, Jang-Won;Park, Jung-cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.467-472
    • /
    • 2021
  • In this paper, the ignition trans used in the gas boiler was produced to measure current, power factor, and power consumption. As a result of measuring the power factor, the self-made ignition trans was higher than that of foreign products and the power consumption was lower. The ignition gap was fixed to 2 m, and when the ignition rod length was 30cm, 500cm, and 1000cm, it was measured as 3.45A, 14.5A, and 16.2A. When the ignition gap was fixed to 4mm and the ignition rod length was 30cm, 500cm, and 1000cm, it was measured as 2.8A, 10.1A, and 13.2A. When the ignition gap was fixed at 6mm and the ignition rod length was 30cm, 500cm, and 1000cm, it was measured as 2.73A, 10.2A, and 32.6A. When the ignition gap was fixed at 8 mm and the ignition rod length was 30 cm, 500cm, and 1000cm, it was measured as 3.13A, 9.37A, and 21.4. The ignition gap was fixed at 10 mm, and when the ignition rod length was 30cm, it was measured as 3.4A, 14.4 A, and 25.6A. In conclusion, as the length of the ignition rod increased, the current also increased.

Dependence of Ozone Generation in a Micro Dielectric Barrier Discharge on Dielectric Material and Micro Gap Length

  • Sakoda, Tatsuya;Sung, Youl-Moon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.201-206
    • /
    • 2004
  • In order to investigate the optimum conditions for the effective ozone formation in a dielectric barrier discharge, measurements of ozone concentration were carried out for various conditions such as the gap length, the dielectric material and the operating gas. It was found that the optimum discharge conditions differed exceedingly in the types of operating gases and dielectric materials. In dry air, dielectric material with low dielectric constant and thermal conductivity, which might contribute to the restriction of the gas temperature rise in the discharge region, proved effective in obtaining both high ozone yield and concentration. The optimum gap length was considered to be in the range of 600-800 mm. In oxygen, using a quartz glass disk as a dielectric material, the required condition to obtain the high ozone yield and concentration was expanded.

Electromagnetic characteristics of non-inductively wound coil according to gap length between layers (무유도 초전도 한류 코일의 층간 간격에 따른 전자기적 특성 연구)

  • Yang, Seong-Eun;Park, Dong-Keun;Chang, Ki-Sung;Kim, Young-Jae;Ahn, Min-Cheol;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.822_823
    • /
    • 2009
  • Superconducting fault current limiters (SFCLs) provide one of the most effective solutions to cope with enormous increase of fault current level. The 13.2 kV/ 630 A class resistive SFCL using coated conductor (CC) was developed and its short-circuit test was successful. Successful commercialization of the SFCL requires that no loss is produced by impedance of limiting coil during normal operation. Since the limiting coil consists of inner layer and outer layer, gap length between the layers is an important parameter to analyze the electromagnetic characteristics of coil. This paper deals with the electromagnetic characteristics of coil according to gap length through the simulation and analysis in comparison with experiment results.

  • PDF

AN EFFICIENT SENEOR ARRAY FOR A LATFE-GAP MAGNETIC LEVITATION SYSTEM

  • Na, Seung-You;Shin, Dae-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.154-157
    • /
    • 1995
  • A magnetic levitation control system is nonlinear and very unstable. Thus there should be a stabilizing compensation network and a feedback path. Due to the levitation control a noncontact photoresistor sensor is generally used. One photocell provides a certain amount of variation in length by the ball shadow casted on the cell surface. Furthermore at the boundary of the cell, the linearity of sensitivity deteriorates severely. To overcome the constraints of the length and linearity, an efficient sensor array is deviced and applied in the feedback path of a large-gap magnetic levitation control system. A number of CdS photocells and a summing circuit of the sensor output signals are used for a sensor array. The levitation length of a ball and the transient performances are main objectives of the large-gap suspension system using the sensor array.

  • PDF

A Study on the Development of Low Frequency Electronic Ignition Trans for Large Combustors (대형연소기에 적용되는 저주파 전자식 점화 트랜스 개발에 관한 연구)

  • Lee, Ho-kyun;Park, Jung-cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.223-229
    • /
    • 2022
  • In this paper, the ignition trans used in boilers was studied. Regardless of the change in the ignition rod length and the ignition rod gap, the output frequency was measured between 59.5 and 61.3 Hz, and it was found that the low frequency circuit operated normally. When the ignition rod gap changed by 2 to 10 mm, the ignition rod length was measured from 2.8A to 3.45A at 30cm. The ignition rod length was measured from 9.37 A to 14.5 A at 500 cm and from 13.2 A to 32.6 A at 1000 cm. As the ignition rod length and the ignition rod gap increased, the current increased. As a result of measuring the secondary coil output voltage. The ignition rod length was measured from AC 0.84 kV to AC 1.75 kV at 30 cm, AC 1.17 kV to AC 1.944 at 500 cm, and AC 1.4 kV to AC 7.18 kV at 1000 cm. As the ignition rod length and the ignition rod gap increased, the output voltage of the secondary coil also increased. As a result of measuring the output voltage of the ignition trans, the ignition rod length was measured from DC 1.11 kV to DC 1.57 kV at 30cm, DC 2.49 kV to DC 3.72 kV at 500cm, and DC 3.78 kV to DC 9.42 kV at 1000cm, and the power voltage increased as the ignition rod length and interval increased.

Flashover Characteristics of Air in the Arrangement of Cylinder-Shaped Rod and Plane Electrode in Case of Flame on the Plane Electrode (평단봉대평판 전극배치에서 평판 전극에 화염이 존재할 때 공기의 섬락전압 특성)

  • Kim, In-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.82-87
    • /
    • 2012
  • In this paper, flashover characteristics of air in the vertical arrangement of cylinder-shaped rod and plane gap in the case of combustion flame on the plane electrode were examined under the application of a.c. and d.c. high-voltages. In order to investigate the effect of propane flame on the flashover characteristics of air, flashover voltages in accordance with the variation of the gap length and the horizontal distance between the flame and the high-voltage rod electrode were measured. As the result of the experiment, flashover voltages in the presence of the flame were substantially lowered than those in the absence of flame, and the polarity effects with the d.c. voltages on appeared owing to the flame. Flashover voltages of air were increased in the proportion of the gap length and the horizontal distance in the case of both a.c. and d.c. voltages, but the flame was extinguished by such corona wind that was produced from the rod electrode when the gap length and the horizontal distance reached to a certain degree.

Characteristic Analysis of Air-gap Control System in Performance Test Machine of a LIM for Railway Transit (철도차량용 선형유도전동기 성능시험기의 공극조절 시스템 특성 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song;Park, Hyun-June;Kwon, Sam-Young;Han, Kyung-Hee
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1955-1961
    • /
    • 2008
  • A lot of researches on a linear induction motor(LIM) have been advanced to realize a traction system with high efficiency and performance for railway transit for a long time. However, most of them are limited in design of a LIM part such as Primary and Secondary. At a LIM which is traveling, the change of an air-gap(It occurs by a construction tolerance of a secondary reaction plate) becomes the cause which decreases a smoother ride and the efficiency of railway transit system. Therefore, uniform air-gap operation of LIM is important issue to improve the system efficiency. However, the researches which control the air-gap length of the LIM with technical and high-cost problem have been not advanced a lot. Therefore, in this research, it is introduced an air-gap control system for performance test machine of a scale-downed LIM which is able to control the air-gap length of the LIM and monitor a variety of performance changes of the propulsion system, and conducted a research on feasibility of the system based on characteristic analysis.

  • PDF