• Title/Summary/Keyword: gap control

Search Result 1,352, Processing Time 0.029 seconds

Acceleration Feedforward Control in Active Magnetic Bearing System Subject to Base Motion by Filtered-x LMS Algorithm (베이스 가진을 받는 능동자기베어링 시스템에서 Filtered-x LMS 알고리듬을 이용한 가속도 앞먹임 제어)

  • Kang, Min-Sig
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1712-1719
    • /
    • 2003
  • This paper concerns on application of active magnetic bearing(AMB) system to levitate the elevation axis of an electro-optical sight mounted on moving vehicles. In such a system, it is desirable to retain the elevation axis within the predetermined air-gap while the vehicle is moving. An optimal base acceleration feedforward control is proposed to reduce the base motion response. In the consideration of the uncertainty of the system model, a filtered-x least-mean-square(FXLMS) algorithm is used to estimate the frequency response function of the feedforward control which cancels base motions. The frequency response function is fitted to an optimal feedforward control. Experimental results demonstrate that the proposed control reduces the air-gap deviation to 27.7% that by feedback control alone.

Control of Conductive Plate Through Varying the Open Area Size of the Partially, Magnetically Isolated Electrodyamic Wheel (부분 차폐된 동전기 휠의 개방 영역 크기 조절을 통한 전도성 평판의 제어)

  • Jung, Kwang-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.230-236
    • /
    • 2012
  • Shielding the air-gap magnetic field of the electrodynamic wheel below a conductive plate and opening the shielding plate partially, a thrust force and a normal force generate on the conductive plate at the open area. But, as only the variable controlling both forces is a rotating speed of the electrodynamic wheel, it is very difficult to control the forces independently by the speed. So, we discuss a novel method controlling the forces effectively through manipulating a size of the open area. The independent control is made possible by virtue of the feature that the relative ratio between both forces is irrelevant to an air-gap length and determined uniquely for a specific rotating speed of the wheel. Therefore, the rotating speed and the size of open area become new control variables. The feasibility of the method is verified experimentally. Specially, the controllable magnetic forces are used in a noncontact conveyance of the conductive plate.

Experiment for Levitation Control of a Magnetic Levitation System Supplied with a Battery (배터리로 구동되는 자기부상 시스템의 부상제어 특성 실험)

  • Nam Yun-Ho;Park Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.992-994
    • /
    • 2004
  • In this paper, hybrid electromagnets using NdFeB permenant magnet are designed by 3-dimensional finite element analysis. Four hybrid magnets levitate the carrier of which total weight including control circuits and battery is 14[kg]. The nominal air gap length of the hybrid magnet is 3[mm]. The control circuit consists of DSP, 4-quadrant chopper, and gap sensor as feedback sensors. As a result, some experimental results for the magnetic levitation control by PI feedback control theory are shown.

  • PDF

Traffic control technologies without interruption for component replacement of long-span bridges using microsimulation and site-specific data

  • Zhou, Junyong;Shi, Xuefei;Zhang, Liwen;Sun, Zuo
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.169-178
    • /
    • 2019
  • The replacement of damaged components is an important task for long-span bridges. Conventional strategy for component replacement is to close the bridge to traffic, so that the influence of the surrounding environment is reduced to a minimum extent. However, complete traffic interruption would bring substantial economic losses and negative social influence nowadays. This paper investigates traffic control technologies without interruption for component replacement of long-span bridges. A numerical procedure of traffic control technologies is proposed incorporating traffic microsimulation and site-specific data, which is then implemented through a case study of cable replacement of a long-span cable-stayed bridge. Results indicate traffic load effects on the bridge are lower than the design values under current low daily traffic volume, and therefore cable replacement could be conducted without traffic control. However, considering a possible medium or high level of daily traffic volume, traffic load effects of girder bending moment and cable force nearest to the replaced cable become larger than the design level. This indicates a potential risk of failure, and traffic control should be implemented. Parametric studies show that speed control does not decrease but increase the load effects, and flow control using lane closure is not effectual. However, weight control and gap control are very effective to mitigate traffic load effects, and it is recommended to employ a weight control with gross vehicle weight no more than 65 t or/and a gap control with minimum vehicle gap no less than 40 m for the cable replacement of the case bridge.

Numerical Study on Flow Characteristics of Synthetic Jet with Rectangular and Circular Slot Exit (사각형 및 원형 출구 Synthetic Jet의 유동 특성에 대한 수치적 연구)

  • Kim, Min-Hee;Kim, Woo-Re;Kim, Chong-Am;Jung, Kyung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.585-595
    • /
    • 2011
  • The flow characteristics of synthetic jet depending on rectangular and circular jet exit configuration are investigated using numerical computation with cross flow. In rectangular slot, synthetic jet generates the strong vortex but supplies fewer momentum and effectiveness of flow control is reduced along flow direction. In circular slot, regular vortex is formed from slot center to end. It affects the wider region than rectangular slot. The distribution of wall shear stress is considered in order to indicate the effectiveness of flow control device for flow separation delay. Consequently, circular slot is a more suitable candidate for delaying flow separation. In order to derive the optimal shape of a circular slot exit, hole gap and diameter that affect the flow structure and flow control were analyzed. As a result, consider the hole diameter and gap of circular slot exit design, effectiveness of the flow control can be increased.

New Generation Gap Models for Evolutionary Algorithm in Real Parameter Optimization (실수최적화 진화 알고리즘을 위한 새로운 세대차 모델)

  • Choi, Jun-Seok;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.62-68
    • /
    • 2009
  • Two new generation gap models with modified parent-centric recombination(PCX) operator are proposed. First, the self-adaptation generation gap(SGG) model is a control method that keeps a replaced probability of parents by offspring to a certain level which obtains better performance. Second, virtual cluster generation gap(VCGG) is provided to extend distances among parents using clustering, which causes it to diversify individuals. In this model, distances among parents can be controlled by size of clusters. To demonstrate the effectiveness of our two proposed approaches, experiments for three standard test problems are executed and compared to most competing current approaches, CMA-ES and Generalized Generation Gap(G3) with PCX. It is shown two proposed methods are superior to consistently other approaches in the study.

Novel DC Grid Connection Topology and Control Strategy for DFIG-based Wind Power Generation System

  • Yi, Xilu;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.466-472
    • /
    • 2013
  • The paper presents a novel DC grid connection topology and control strategy for doubly-fed induction generator (DFIG) based wind power generation system. In order to achieve the wind power conversion, the stator side converter and the rotor side converter is used to implement the DFIG control based on the indirect air-gap flux orientation, and a DC/DC converter is used for the DFIG system to DC grid connection. The maximum power point tracking and DC voltage droop control can also be implemented for the proposed DFIG system. Finally, a 4-terminal DFIG-based multi-terminal DC grid system is developed by Matlab to validate the availability of the proposed system and control strategy.

Levitation Control Circuit Design for a Magnetic Levitation System Supplied with a Battery (배터리로 구동되는 자기부상시스템의 부상제어회로 설계)

  • Nam, Yun-Ho;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.27-29
    • /
    • 2004
  • In this paper, a levitation control circuit for a magnetic levitation system supplied with a battery is designed. The control circuit consists of DSP, 4-quadrant chopper, and gap sensor as feedback sensors. Moreover the DSP includes PWM generator, A/D converter, etc. The feedback signals from gap sensors go into A/D converter of DSP to compare with reference. As a result, The design procedures of the levitation control circuit and battery power distribution system are described and basic experiment results are shown.

  • PDF

Design for Improving Magnetic Force of Control Valve in Variable Compressor (가변압축기용 제어 밸브의 전자력 향상 설계)

  • Lee, Y.J.;Lee, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.44-49
    • /
    • 2010
  • This paper represents solenoid design of control valve for incline angle control in variable compressor. Some theoretical and numerical analysis were performed to analyse solenoid and compared with experimental results. Maxwell program was used for numerical analysis. Through redesigns of housing body, plunger, core, and disk in control valve, the needed force was gotten. Reduction of core groove and housing body air-gap had a large influence on magnetic force. But increasing of disk thickness had little effect on magnetic force. Control valve efficiency could be improved through solenoid redesign.

  • PDF

정수압 저어널 베어링의 동특성 향상에 관한 연구

  • 양문호;이기영;안유민;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.195-201
    • /
    • 1996
  • The dynamic characteristics of externally pressurized journal bearing have been studied theoretically. The Reynolds' equation has been solved by FDM, and the dynamic coefficients have been calculated by using perturbation method. The bearing is compensated by orifice or double-pad diaphragm control valve. The effects of diaphragm initial gap and stiffness are considered. As the results of analysis, it is shown that a control valve has better performance than orifice.

  • PDF