• Title/Summary/Keyword: gamma-rays: theory

Search Result 20, Processing Time 0.026 seconds

COSMIC RAYS AND GAMMA-RAYS IN LARGE-SCALE STRUCTURE

  • INOUE SUSUMU;NAGASHIMA MASAHIRO;SUZUKI TAKERU K.;AOKI WAKO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.447-454
    • /
    • 2004
  • During the hierarchical formation of large scale structure in the universe, the progressive collapse and merging of dark matter should inevitably drive shocks into the gas, with nonthermal particle acceleration as a natural consequence. Two topics in this regard are discussed, emphasizing what important things nonthermal phenomena may tell us about the structure formation (SF) process itself. 1. Inverse Compton gamma-rays from large scale SF shocks and non-gravitational effects, and the implications for probing the warm-hot intergalactic medium. We utilize a semi-analytic approach based on Monte Carlo merger trees that treats both merger and accretion shocks self-consistently. 2. Production of $^6Li$ by cosmic rays from SF shocks in the early Galaxy, and the implications for probing Galaxy formation and uncertain physics on sub-Galactic scales. Our new observations of metal-poor halo stars with the Subaru High Dispersion Spectrograph are highlighted.

Dosimetrical Analysis of Reactor Leakage Gamma-rays by Means of Scintillation Spectrometry

  • Jun, Jae-Shik
    • Nuclear Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.291-309
    • /
    • 1973
  • Exposure rates due to leakage gamma-rays from operating reactors TRIGA Mark II and III were measured in a horizontal plane by means of scintillation spectrometry using a 3"$\times$3" cylindrical Nal(T1) detector associated with a 400 channel pulse height analyzer under varied conditions of reactor operation. In determining exposure rate due to the leakage gamma-rays at each point of measurement, Moriuchi's spectrum-exposure rate conversion theory was applied instead of using conventional responce matrix method which necessitates very complicated procedures to convert a spectrum into exposure rate. The results show that a basic pattern of "typical" spectrum of the reactor leakage gamma-rays is neither affected by thermal output of the reactor, nor influenced by overall attenuation in radiation intensity. It was indicated that he attenuation of the leakage gamma-rays in air in terms of exposure rate as a whole follows an exponential law, and the total exposure rate due to the leakage gamma-rays at a certain point is nearly proportional to thermal output of the reactor. The complexity in spectrum measured for a movable core reactor, TRIGA Mark III, was analyzed through spectrum resolution, and proper judgement of the leakage gamma-rays in a complex spectrum was discussed.ctrum was discussed.

  • PDF

GPS QUASARS AS SPECIAL BLAZARS

  • BAI J. M.;LEE MYUNG GYONG
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.125-128
    • /
    • 2005
  • In this paper, we argue that the gigahertz peaked spectrum (GPS) quasars are special blazars, blazars in dense and dusty gas enviornment. The ROSAT detection rate of GPS quasars is similar to that of flat spectrum radio quasars (FSRQs), suggesting that the relativistic jets in GPS quasars are oriented at small angle to the line of sight. Due to strong inverse Compton scattering off infrared photons from dense and dusty nuclear interstellar media in GPS quasars, most of them may have significant soft gamma-ray and X-ray emission, which is consistent with ASCA X-ray observations. Because Compton cooling in GPS quasars is stronger than that in FSRQs, synchrotron emission in GPS quasars may less dominate over thermal emission of the accretion disk and hot dust, hence most GPS quasars show low optical polarization and small variability, consistent with observations. We suggest that it is the significant radio emission of electron/positron pairs produced by the interaction of gamma-rays with the dense gas and dust grains in GPS quasars that makes GPS quasars show steep radio spectra, low radio polarization, and relatively faint VLBI/VLBA cores. Whether GPS quasars are special blazars can be tested by gamma-ray observations with GLAST in the near future, with the detection rate of GPS quasars being similar to that of FSRQs.

Radiation Damage of SiC Detector Irradiated by High Dose Gamma Rays

  • Kim, Yong-Kyun;Kang, Sang-Mook;Park, Se-Hwan;Ha, Jang-Ho;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.87-90
    • /
    • 2006
  • Two SiC radiation detector samples were irradiated by Co-60 gamma rays. The irradiation was performed with dose rates of 5 kGy/hour and 15 kGy/hour for 8 hours, respectively. Metal/semiconductor contacts on the surface were fabricated by using a thermal evaporator in a high vacuum condition. The SiC detectors have metal contacts of Au(2000 ${\AA}$)/Ni(300 ${\AA}$) at Si-face and of Au(2000 ${\AA}$)/Ti(300 ${\AA}$) at C-face. I-V characteristics of the SiC semiconductor were measured by using the Keithley 4200-SCS parameter analyzer with voltage sources included. From the I-V curve, we analyzed the Schottky barrier heights(SBHs) on the basis of the thermionic emission theory. As a result, the 6H-SiC semiconductor showed- similar Schottky barrier heights independent to the dose rates of the irradiation with Co-60 gamma rays.

  • PDF

A Study of Shielding Properties of X-ray and Gamma in Barium Compounds

  • Seenappa, L.;Manjunatha, H.C.;Chandrika, B.M.;Chikka, Hanumantharayappa
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.26-32
    • /
    • 2017
  • Background: Ionizing radiation is known to be harmful to human health. The shielding of ionizing radiation depends on the attenuation which can be achieved by three main rules, i.e. time, distance and absorbing material. Materials and Methods: The mass attenuation coefficient, linear attenuation coefficient, Half Value Layer (HVL) and Tenth Value Layer (TVL) of X-rays (32 keV, 74 keV) and gamma rays (662 keV) are measured in Barium compounds. Results and Discussion: The measured values agree well with the theory. The effective atomic numbers ($Z_{eff}$) and electron density (Ne) of Barium compounds have been computed in the wide energy region 1 keV to 100 GeV using an accurate database of photon-interaction cross sections and the WinXCom program. Conclusion: The mass attenuation coefficient and linear attenuation coefficient for $BaCO_3$ is higher than the $BaCl_2$, $Ba(No_3)_2$ and BaSO4. HVL, TVL and mean free path are lower for $BaCO_3$ than the $BaCl_2$, $Ba(No_3)_2$ and $BaSO_4$. Among the studied barium compounds, $BaCO_3$ is best material for x-ray and gamma shielding.

Exposure Measurements of Co-60 Gamma rays (Co-60 감마선의 조사선량 측정)

  • Hah, Suck-Ho;Kim, Hyun-Moon
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.2
    • /
    • pp.7-16
    • /
    • 1991
  • Measurement of Co-60 gamma rays has been made for establishment of exposure standard and analyze it's overall uncertainties. Exposure rate determined by the charge mode method using vibrating reed amplifier with cylinderical type cavity chamber. The values of a variety of physical constants and the correction factors are evaluated. The resulting exposure rate is 690.81 R/h at the distance of 1m from the source and the related uncertainties is ${\pm}0.8%$

  • PDF

Dynamic Mechanical Behavior of Ultra-High Molecular Weight Polyethylene Irradiated with Gamma Rays

  • Lee, Choon-Soo;Jho, Jae-Young;Park, Kuiwon;Hwang, Tae-Won
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.141-143
    • /
    • 2004
  • We have investigated the dynamic mechanical behavior of ultra-high molecular weight polyethylene (UHMWPE) irradiated with varying doses of gamma rays. A relaxation peak in the loss factor curve, which has not been reported previously in the literature, is observed at a temperature above the crystal melting temperature. The peak is unique to UHMWPE and appears to be related to the high degree of entanglement. Because the temperature and intensity of the peak are reduced by irradiation-induced chain scission and crosslinking, respectively, we believe that the peak is associated with disentanglement relaxation. The behavior of the storage modulus in the melt state agrees with the classical theory of rubber elasticity.

THE CONTRIBUTION TO THE EXTRAGALACTIC γ-RAY BACKGROUND BY HADRONIC INTERACTIONS OF COSMIC RAYS PRODUCING EUV EMISSION IN CLUSTERS OF GALAXIES

  • KUO PING-HUNG;BOWYER STUART;HWANG CHORNG- YUAN
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.597-600
    • /
    • 2004
  • A substantial number of processes have been suggested as possible contributors to the extragalactic $\gamma$-ray background (EGRB). Yet another contribution to this background will be emission produced in hadronic interactions of cosmic-ray protons with the cluster thermal gas; this class of cosmic rays (CRs) has been shown to be responsible for the EUV emission in the Coma Cluster of galaxies. In this paper we assume the CRs in the Coma Cluster is prototypic of all clusters and derive the contribution to the EGRB from all clusters over time. We examine two different possibilities for the scaling of the CR flux with cluster size: the number density of the CRs scale with the number density of the thermal plasma, and alternatively, the energy density of the CRs scale with the energy density of the plasma. We find that in all scenarios the EGRB produced by this process is sufficiently low that it will not be observable in comparison with other mechanisms that are likely to produce an EGRB.

Nonthermal Radiation from Supernova Remnant Shocks

  • Kang, Hyesung
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.133-140
    • /
    • 2013
  • Most of high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) at supernova remnants (SNRs) within the Galaxy. Fortunately, nonthermal emissions from CR protons and electrons can provide direct observational evidence for such a model and place strong constraints on the complex nonlinear plasma processes in DSA theory. In this study we calculate the energy spectra of CR protons and electrons in Type Ia SNRs, using time-dependent DSA simulations that incorporate phenomenological models for some wave-particle interactions. We demonstrate that the time-dependent evolution of the self-amplified magnetic fields, Alfv$\acute{e}$nic drift, and escape of the highest energy particles affect the energy spectra of accelerated protons and electrons, and so resulting nonthermal radiation spectrum. Especially, the spectral cutoffs in X-ray and ${\gamma}$-ray emission spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. Thus detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations of SNRs are crucial in testing the SNR hypothesis for the origin of Galactic cosmic rays.

NONTHERMAL COMPONENTS IN THE LARGE SCALE STRUCTURE

  • MINIATI FRANCESCO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.465-470
    • /
    • 2004
  • I address the issue of nonthermal processes in the large scale structure of the universe. After reviewing the properties of cosmic shocks and their role as particle accelerators, I discuss the main observational results, from radio to $\gamma$-ray and describe the processes that are thought be responsible for the observed nonthermal emissions. Finally, I emphasize the important role of $\gamma$-ray astronomy for the progress in the field. Non detections at these photon energies have already allowed us important conclusions. Future observations will tell us more about the physics of the intracluster medium, shocks dissipation and CR acceleration.