• Title/Summary/Keyword: gamma wave

Search Result 165, Processing Time 0.027 seconds

오일샌드 저류층 지질특성화를 위한 기초연구 소개

  • Choe, Jae-Yong;Kim, Dae-Seok;Gwon, Lee-Gyun;Jeong, Gong-Su
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.106-106
    • /
    • 2010
  • 오일샌드는 비투멘(bitumen), 물, 점토, 모래의 혼합체로 이루어진 비재래형 탄화수소 자원으로 세계적인 고유가 시대에 큰 관심을 받고 있는 석유자원 중 하나이다. 오일샌드는 대부분이 캐나다 앨버타주에 분포하고 있으며 주요 저류층으로는 아스바스카(Athabasca), 콜드레이크(Cold Lake) 지역의 멕머레이층(McMurray Formation), 클리어워터층(Clearwater Formation), 그랜드래피드층(Grand Rapid Formation)과 피스리버(Peace River) 지역의 블루스카이층(Bluesky Formation), 게팅층(Gathing Formation)이 있다. 오일샌드 저류층은 고생대 탄산염 기반암 위에 하성-에스츄어리에 이르는 다양한 퇴적환경에서 형성되어 매우 복잡한 지질특성이 나타난다. 오일샌드 저류층의 효율적인 개발을 위해서는 저류층의 복잡한 지질학적 특성의 이해가 반드시 필요하다. 본 연구에서 캐나다 오일샌드 시추코어 분석 DB, 물리검층 자료, 현장 및 현생 시추코어를 통하여 오일샌드 저류층의 지질특성화 정보의 도출을 시도하였다. 우선 캐나다 앨버타 전역에 분포하는 시추공의 기본 정보(표고, 위경도, 층서별 최상부 심도, 생산광구명, 광구개발업체)를 제공하는 AccuMap DB 프로그램을 이용하여 광역적인 오일샌드 저류층의 분포 특성을 이해하고자 주요층서에 대한 고지형도 및 층후도를 생산광구별로 도면화하여 분석하였다. 또한 캐나다 ENCANA사와 국제공동연구의 일환으로 확보된 크리스티나 레이크(Christina Lake)광구의 현장 시추코어를 이용하여 코어의 상세기재, 비파괴 물성측정, 입도/비투멘 함유량 분석과 같은 다양한 실내 시추코어분석 실험을 수행 중이다. 비파괴 물성측정은 현장 시추코어의 물리적/화학적 특성을 파악하고자 MSCL(Multi sensor core logger)과 XRF 코어 스캐너(X-ray fluorescence core scaner)를 통해 이루어지며, 분석결과로 시추코어의 감마밀도(gamma density), P파 속도(P-wave velocity), 전기비저항(resistivity), 대자율(magnetic susceptibility) 및 색지수의 물성과 정량적 화학조성을 측정한다. 현장 시추코어의 일부는 유기용매를 이용하여 퇴적물 내의 비투멘을 완전히 추출하고 퇴적물 입도와 저류층 비투멘 함유량 측정에 이용되었다. 현장 시료 분석 결과들은 물리검층 자료와 대비를 통하여 저류층의 지질특성을 규명하는 연구에 이용될 예정이다. 마지막으로 오일샌드의 현생 유사 퇴적환경으로 알려진 서해 경기만 조간대에서 시추코어 퇴적물을 획득하여 상세 기재하였으며, 이를 통해 오일샌드 저류층의 퇴적 모델을 제시하고자 퇴적층서 연구를 진행 중이다. 향후 오일샌드 관련 시추코어의 분석 결과들이 종합되면 기존 보다 비투멘 회수효율을 향상시킬 수 있는 정밀한 오일샌드 저류층 지질모델을 수립할 수 있을 것으로 기대된다.

  • PDF

A research on the emotion classification and precision improvement of EEG(Electroencephalogram) data using machine learning algorithm (기계학습 알고리즘에 기반한 뇌파 데이터의 감정분류 및 정확도 향상에 관한 연구)

  • Lee, Hyunju;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.27-36
    • /
    • 2019
  • In this study, experiments on the improvement of the emotion classification, analysis and accuracy of EEG data were proceeded, which applied DEAP (a Database for Emotion Analysis using Physiological signals) dataset. In the experiment, total 32 of EEG channel data measured from 32 of subjects were applied. In pre-processing step, 256Hz sampling tasks of the EEG data were conducted, each wave range of the frequency (Hz); Theta, Slow-alpha, Alpha, Beta and Gamma were then extracted by using Finite Impulse Response Filter. After the extracted data were classified through Time-frequency transform, the data were purified through Independent Component Analysis to delete artifacts. The purified data were converted into CSV file format in order to conduct experiments of Machine learning algorithm and Arousal-Valence plane was used in the criteria of the emotion classification. The emotions were categorized into three-sections; 'Positive', 'Negative' and 'Neutral' meaning the tranquil (neutral) emotional condition. Data of 'Neutral' condition were classified by using Cz(Central zero) channel configured as Reference channel. To enhance the accuracy ratio, the experiment was performed by applying the attributes selected by ASC(Attribute Selected Classifier). In "Arousal" sector, the accuracy of this study's experiments was higher at "32.48%" than Koelstra's results. And the result of ASC showed higher accuracy at "8.13%" compare to the Liu's results in "Valence". In the experiment of Random Forest Classifier adapting ASC to improve accuracy, the higher accuracy rate at "2.68%" was confirmed than Total mean as the criterion compare to the existing researches.

EEG based Cognitive Load Measurement for e-learning Application (이러닝 적용을 위한 뇌파기반 인지부하 측정)

  • Kim, Jun;Song, Ki-Sang
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.2
    • /
    • pp.125-154
    • /
    • 2009
  • This paper describes the possibility of human physiological data, especially brain-wave activity, to detect cognitive overload, a phenomenon that may occur while learner uses an e-learning system. If it is found that cognitive overload to be detectable, providing appropriate feedback to learners may be possible. To illustrate the possibility, while engaging in cognitive activities, cognitive load levels were measured by EEG (electroencephalogram) to seek detection of cognitive overload. The task given to learner was a computerized listening and recall test designed to measure working memory capacity, and the test had four progressively increasing degrees of difficulty. Eight male, right-handed, university students were asked to answer 4 sets of tests and each test took from 61 seconds to 198 seconds. A correction ratio was then calculated and EEG results analyzed. The correction ratio of listening and recall tests were 84.5%, 90.6%, 62.5% and 56.3% respectively, and the degree of difficulty had statistical significance. The data highlighted learner cognitive overload on test level of 3 and 4, the higher level tests. Second, the SEF-95% value was greater on test3 and 4 than on tests 1 and 2 indicating that tests 3 and 4 imposed greater cognitive load on participants. Third, the relative power of EEG gamma wave rapidly increased on the 3rd and $4^{th}$ test, and signals from channel F3, F4, C4, F7, and F8 showed statistically significance. These five channels are surrounding the brain's Broca area, and from a brain mapping analysis it was found that F8, right-half of the brain area, was activated relative to the degree of difficulty. Lastly, cross relation analysis showed greater increasing in synchronization at test3 and $4^{th}$ at test1 and 2. From these findings, it is possible to measure brain cognitive load level and cognitive over load via brain activity, which may provide atimely feedback scheme for e-learning systems.

  • PDF

Cross-Sectional Relations of Arterial Stiffness and Inflammatory Markers in Korean Adults Aged 50 Years and Older (지역사회 거주 50세 이상 성인의 동맥경직도와 염증반응인자와의 관련성)

  • Ryu, So-Yeon;Shin, Min-Ho;Lee, Young-Hoon;Rhee, Jung-Ae;Choi, Jin-Su;Park, Kyeong-Soo;Nam, Hae-Sung;Jeong, Seul-Ki;Kweon, Sun-Seog
    • Journal of agricultural medicine and community health
    • /
    • v.36 no.2
    • /
    • pp.101-112
    • /
    • 2011
  • Objectives: The aim of this study is to determine arterial stiffness levels as measured by brachial-ankle pulse wave velocity (baPWV) and to identify the association between arterial stiffness and inflammatory markers, in healthy adults over 50 years old. Methods: The study population consisted of 4617 persons over the age of 50 years who participated in the baseline survey of the Dong-gu Study, which was conducted in 2007 and 2008. Arterial stiffness was measured using baPWV. A multiple regression analysis was performed to assess the relationship between conventional cardiovascular risk factors and inflammatory markers, including white blood cell (WBC) counts, high-sensitive C-reactive protein (hs-CRP), and gamma glutamyltransferase (GGT). Results: After adjustment for conventional cardiovascular risk factors including sex, age, smoking status, body mass index, systolic blood pressure, fasting glucose, hypertension or diabetic medication, total cholesterol, triglycerides, uric acid, and alanine aminotransferase, baPWV was significantly associated with WBC counts (${\beta}$=0.158, p<0.0001), hs-CRP (${\beta}$=0.244, p=0.026), and GGT (${\beta}$=0.003, p<0.0001). Conclusion: This study shows that arterial stiffness correlates with inflammatory markers. Arterial stiffness may be used as a composite risk factor to identify persons with higher risk for cardiovascular disease. Additionally, arterial stiffness may be a marker for future cardiovascular disease and a target for prevention.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF