• Title/Summary/Keyword: gamma wave

Search Result 165, Processing Time 0.031 seconds

HOW TO DEAL WITH RADIO ASTRONOMY INTERFERENCE

  • UMAR, ROSLAN;HAZMIN, SABRI NOR;ABIDIN, ZAMRI ZAINAL;IBRAHIM, ZAINOL ABIDIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.691-693
    • /
    • 2015
  • Radio sources are very weak, as they can travel through large distances. Radio sources also have photons with low energies compared to others electromagnetic waves (EM). Microwave photons have a little more energy than radio waves, infrared photons have still more, then visible, ultraviolet, X-rays, and the most energetic electromagnetic wave is gamma-rays. Radio astronomy studies are restricted due to radio frequency interference (RFI) produced by people. If this disturbance is not minimized, it poses critical problems for astrophysical studies. The purpose of this paper is to profile RFI maps in Peninsular Malaysia with a minimum mapping technique for RFI interference. Decision-making processes using GIS (Geographical Information System) for the selection requires gathering information for a variety of parameters. These factors affecting the selection process are also taken into account. In this study, various factors or parameters are involved, such as the availability of telecommunications transmission (including radio and television), rainfall, water lines and human activity. This mapping step must be followed by RFI site testing in order to identify areas of low RFI. This study will benefit radio astronomy research, especially regarding the RFI profile.

Verification of Effectiveness of Wearing Compression Pants in Wearable Robot Based on Bio-signals (생체신호에 기반한 웨어러블 로봇 내 부분 압박 바지 착용 시 효과 검증)

  • Park, Soyoung;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.2
    • /
    • pp.305-316
    • /
    • 2021
  • In this study, the effect of wearing functional compression pants is verified using a lower-limb wearable robot through a bio-signal analysis and subjective fit evaluation. First, the compression area to be applied to the functional compression pants is derived using the quad method for nine men in their 20s. Subsequently, functional compression pants are prepared, and changes in Electroencephalogram (EEG) and Electrocardiogram (ECG) signals when wearing the functional compression and normal regular pants inside a wearable robot are measured. The EEG and ECG signals are measured with eyes closed and open. Results indicate that the Relative alpha (RA) and Relative gamma wave (RG) of the EEG signal differ significantly, resulting in increased stability and reduced anxiety and stress when wearing the functional compression pants. Furthermore, the ECG analysis results indicate statistically significant differences in the Low frequency (LF)/High frequency (HF) index, which reflect the overall balance of the autonomic nervous system and can be interpreted as feeling comfortable and balanced when wearing the functional compression pants. Moreover, subjective sense is discovered to be effective in assessing wear fit, ease of movement, skin friction, and wear comfort when wearing the functional compression pants.

The effect of attention on spinal health of adolescents: The mediating effect of smartphone overindulgence moderated by cognitive strength (청소년의 집중력이 척추건강에 미치는 영향: 인지강도에 의해 조절된 스마트폰 과몰입의 매개효과)

  • Lee, Jin;Kim, Sang-Woo;Lee, Byounghee
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.3
    • /
    • pp.29-47
    • /
    • 2022
  • Purpose: This study was conducted to find out the mediated effects of smartphone overindulgence in the relationship between attention and spinal health of adolescents and to find out how cognitive strength moderates these relationships. Design: Cross-sectional study. Methods: All subjects measured attention, cognition strength, spinal angle, and smartphone overindulgence by measuring the ratio of SMR and mid-beta power to the power of the brain wave, amplitude variation of Cognitive Gamma-Peak, forward slope angle of the cervical spine, and the scale of diagnosis of smartphone addiction. Results: As a result, it shows a significant correlation between Attention, spinal angle, cognitive strength, and smartphone overindulgence(p<.05). In addition, attention was significantly mediated on the spinal angle through smartphone overindulgence(p<.001), and cognitive strength was significantly mediated in relation to smartphone overindulgence and spinal angle(p<.05). Conclusion: This result indicates that the mediation effect of overindulgence of a Smartphone is mediated according to its cognitive strength in relation to its effect of attention on the spine angle.

The Effects of Acupuncture on the Electroencephalogram of Patients with Stroke (자침이 중풍환자의 뇌파 변화에 미치는 영향)

  • Yoon, Ga-Young;Park, Ji-Min;Kim, Dong-Hyuk;Seon, Jong-In;Kang, Jung-Won;Nam, Dong-Woo;Lee, Seung-Deok;Choi, Do-Young;Lee, Jae-Dong
    • Journal of Acupuncture Research
    • /
    • v.29 no.5
    • /
    • pp.1-16
    • /
    • 2012
  • Objectives : The purpose of this study was to examine the effects of manual acupuncture at the $LI_4$, $ST_{36}$ and $LR_3$ on Electroencephalogram(EEG) of patients with stroke. Methods : 32 channel EEG measurement was carried out in 35 Stroke patients(23 males and 12 females). EEG was measured for 21 minutes(made up of 7 sessions, 1 session means 3 minutes time interval) including 15 minutes(5 sessions) of acupuncture time. Power spectrum analysis was used as a measure of complexity. Statistical analysis was performed using Linear mixed model and DUNNETT's multiple comparison. Results : The results were as follows; 1. EEG amplitude was reduced during acupuncture except electrodes PG1 and PG2. 2. There was a notable change during 6~9 minutes after needling in ${\delta}{\cdot}{\beta}{\cdot}{\gamma}$ wave, and during 6~9 minutes after needling in ${\Theta}{\cdot}{\alpha}$ wave. Overall, during 6~9 minutes after needling. 3. TP8 is a common significant electrode among five wave forms. Conclusions : These results suggest that TP8 could be typical electrodes and change of EEG compared to baseline happens most often during 6~9 minutes after manipulated acupuncture at the $LI_4$, $ST_{36}$ and $LR_3$ of patients with stroke.

A Study on the Breakdown in MHEMTs with InAlAs/InGaAs Heterostructure Grown on the GaAs substrate (InAlAs/InGaAs/GaAs MHEMT 소자의 항복 특성에 관한 연구)

  • Son, Myung-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.11
    • /
    • pp.1-8
    • /
    • 2011
  • One of the most important parameters that limit maximum output power of transistor is breakdown. InAlAs/InGaAs/GaAs Metamorphic HEMTs (MHEMTs) have some advantages, especially for cost, compared with InP-based ones. However, GaAs-based MHEMTs and InP-based HEMTs are limited by lower breakdown voltage for output power even though they have good microwave and millimeter-wave frequency performance with lower minimum noise figure. In this paper, InAlAs/$In_xGa_{1-x}As$/GaAs MHEMTs are simulated and analyzed for breakdown. The parameters affecting breakdown are investigated in the fabricated 0.1-${\mu}m$ ${\Gamma}$-gate MHEMT device having the modulation-doped $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ heterostructure on the GaAs wafer using the hydrodynamic transport model of a 2D commercial device simulator. The impact ionization and gate field effect in the fabricated device including deep-level traps are analyzed for breakdown. In addition, Indium mole-fraction-dependent impact ionization rates are proposed empirically for $In_{0.52}Al_{0.48}As/In_xGa_{1-x}As$/GaAs MHEMTs.

Acoustic Band Structures in Two-dimensional Phononic Crystals with a Square Lattice in Water (수중에서 정방형 격자를 갖는 2차원 포노닉 크리스탈의 음향 밴드 구조)

  • Kim, Yoon Mi;Lee, Kang Il;Kang, Hwi Suk;Yoon, Suk Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.335-342
    • /
    • 2015
  • Phononic crystals are composite materials consisting of a periodic arrangement of scattering inclusions in a host material. One of the most important properties of phononic crystals is the existence of band gaps, i.e., ranges of frequencies at which acoustic waves cannot propagate through the structure. The present study aims to investigate theoretically and experimentally the acoustic band structures in two-dimensional (2D) phononic crystals consisting of periodic square arrays of stainless steel solid cylinders with a diameter of 1 mm and a lattice constant of 1.5 mm in water. The theoretical dispersion relation that depicts the relationship between the frequency and the wave vector was calculated along the ${\Gamma}X$ direction of the first Brillouin zone using the finite element method to predict the band structures in the 2D phononic crystals. The transmission and the reflection coefficients were measured in the 2D phononic crystals with 1, 3, 5, 7, and 9 layers of stainless steel cylinders stacked in the perpendicular direction to propagation at normal incidence. The theoretical dispersion relation exhibited five band gaps at frequencies below 2 MHz, the first gap appearing around a frequency of 0.5 MHz. The location and the width of the band gaps experimentally observed in the transmission and the reflection coefficients appeared to coincide well with those determined from the theoretical dispersion relation.

Identification of Subsurface Discontinuities via Analyses of Borehole Synthetic Seismograms (시추공 합성탄성파 기록을 통한 지하 불연속 경계면의 파악)

  • Kim, Ji-Soo;Lee, Jae-Young;Seo, Yong-Seok;Ju, Hyeon-Tae
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.457-465
    • /
    • 2013
  • We integrated and correlated datasets from surface and subsurface geophysics, drilling cores, and engineering geology to identify geological interfaces and characterize the joints and fracture zones within the rock mass. The regional geometry of a geologically weak zone was investigated via a fence projection of electrical resistivity data and a borehole image-processing system. Subsurface discontinuities and intensive fracture zones within the rock mass are delineated by cross-hole seismic tomography and analyses of dip directions in rose diagrams. The dynamic elastic modulus is studied in terms of the P-wave velocity and Poisson's ratio. Subsurface discontinuities, which are conventionally identified using the N value and from core samples, can now be identified from anomalous reflection coefficients (i.e., acoustic impedance contrast) calculated using a pair of well logs, comprising seismic velocity from suspension-PS logging and density from logging. Intensive fracture zones identified in the synthetic seismogram are matched to core loss zones in the drilling core data and to a high concentration of joints in the borehole imaging system. The upper boundaries of fracture zones are correlated to strongly negative amplitude in the synthetic trace, which is constructed by convolution of the optimal Ricker wavelet with a reflection coefficient. The standard deviations of dynamic elastic moduli are higher for fracture zones than for acompact rock mass, due to the wide range of velocities resulting from the large numbers of joints and fractures within the zone.

Electroencephalography Activities Influenced by Classroom Smells of Male High School (남자고등학교 교실냄새에 대한 뇌파반응)

  • Ryu, Hyun;Ko, WooHyong;Kim, JongWoo;Kim, SooRin;Kim, Min Kyung
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.387-396
    • /
    • 2013
  • In this study, the influence of classroom smells (foot odor, hair smell, sour smell, and sweat smell) of male high school and sweat smell and the offensive odor substance (ammonia and butyric acid) on the electroencephalography (EEG) activities of 20 female volunteers, ranging in age from 30 to 50 were studied. The representative response of brainwave index by these smells stimuli was most pronounced on temporal lobes among the brain lobes. By comparison with background EEG activities on temporal lobes, the smells reduced the relative alpha band power (0.04~0.13) and increased the relative beta band power (0.02~0.06) and the relative gamma band power (0.03~0.09). The alpha wave was deactivated, high beta (18~30Hz) and gamma (30~50Hz) waves were remarkably activated. The order of EEG fluctuation caused by the smell stimulus is as follows; hair smell > butyric acid > foot odor, sour smell > ammonia > sweat smell. It means that the classroom smells cause an excessive brain arousal and straining and may be reducing one's attention and learning ability.

  • PDF

The potentiality of color preference analysis by EEG (뇌파분석 통한 색상의 선호도 분석 가능성)

  • Kim, Min-Kyung;Ryu, Hee-Wook
    • Science of Emotion and Sensibility
    • /
    • v.14 no.2
    • /
    • pp.311-320
    • /
    • 2011
  • To quantitatively analyze the effects of color stimulation which is one of the major affecting factors on human emotion, we studied the relationship between color preference and the Electroencephalography (EEG) to 3 color stimuli; bright yellow red (BYR), deep green yellow (DGY), and vivid blue (VB). Physiological signal measured by EEG on the color stimulation was closely related with their well-known colorful images. The brain become more activated with decreasing the color temperature (BYR${\geq}$DGY>VB), and the right brain is more sensitive than the left. On the whole, the EEG values of the frequency bands are in order to beta ${\geq}$ theta and alpha > gamma. As decreasing the color temperature, beta wave increased (BYR${\geq}$DGY>VB), and alpha, beta and gamma waves increased with increasing the color temperature (BYR${\geq}$DGY>VB). The relationship between the color preference and EEG values showed EEG gets more activated at some frequency bands when the color preference becomes higher. In conclusion, the specific frequency band could be activating by a color stimuli which had showed higher the preference. It means that these color stimuli can apply for various industries such as beauty industry, interior design, fashion design, color therapy, and etc.

  • PDF

Physical Properties of and Joint Distribution Within the Cheongju Granitic Mass, as Assessed from Drill-core and Geophysical Well-logging Data (시추 및 물리검층자료의 상관해석을 통한 청주화강암체의 물성 정보 및 절리 분포)

  • Lee, Sun-Jung;Lee, Cheol-Hee;Jang, Hyung-Su;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • To clarify the distribution of joints and fracture zones in the Cheongju granitic mass, we analyzed drill-core and geophysical well-logging data obtained at two boreholes located 30 m from each other. Lithological properties were investigated from the drill-core data and the samples were classified based on the rock mass rating (RMR) and on rock quality designation (RQD). Subsurface discontinuities within soft and hard rocks were examined by geophysical well-logging and cross-hole seismic tomography. The velocity structures constructed from seismic tomography are well correlated with the profile of bedrock depth, previously mapped from a seismic refraction survey. Dynamic elastic moduli, obtained from full waveform sonic and ${\gamma}-{\gamma}$ logging, were interrelated with P-wave velocities to investigate the dynamic properties of the rock mass. Compared with the correlation graph between elastic moduli and velocities for hard rock at borehole BH-1, the correlation points for BH-2 data showed a wide scatter. These scattered points reflect the greater abundance of joints and fractures near borehole BH-2. This interpretation is supported by observations by acoustic televiewer (ATV) and optical televiewer (OTV) image loggings.