• Title/Summary/Keyword: gamma ray dose

Search Result 486, Processing Time 0.036 seconds

Mutation Frequency of Tradescantia (BNL Clone 4430) Stamen Hairs Exposed to Low Dose of Gamma Ray in the KAERI ${\gamma}$-Field (저선량율의 감마선 조사에 의한 자주 달개비의 체세포 돌연변이 출현에 관한 연구)

  • Shin Han Kwon;Young Il Lee;Kyu Hoi Chung;Jeung Haing Oh
    • Nuclear Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.161-167
    • /
    • 1981
  • For determination of mutation frequency induced by chronic irradiation of low dose gamma rays, Tradescarrfia clone 4430 was exposed to Co-60 ${\gamma}$ rays with different exposure rates from 3.6mR/day to 182R/day in or out of the Gamma Field at Kumkok Experiment Farm of KAERI. Somatic mutations based on pink mutant events of the stamen hair cells were clearly observed by the treatment. The pink mutant events were increased proportionally with increasing exposure rates of gamma ray except for relatively high dose rates of 105 R/day and 182 R/day, indicating saturation effect of mutation. The somatic pink mutations could be fairly detectable even in the low dose rate of 3.6mR/day. Therefore, this stamen hair system of Tradescantia clone 4430 seemed to be an reasonable test system for detecting mutability of low level irradiation. These results imply that artificial mutation induction in the fruit and ornamental trees could be expected in the ${\gamma}$-field.

  • PDF

Radiation Treatment of Terephthalic Acid and Ethylene Glycol by using Gamma-rays (감마선을 이용한 테레프탈산과 에틸렌글리콜의 방사선처리)

  • Lee, Sun-Mi;Jo, Hun-Je;Kim, Jeong-Gyu;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.452-456
    • /
    • 2004
  • Gamma-rays effectively decomposed TPA and EG, thus removal of $1.0{\times}10^{-3}$ M pollutants was near 65 and 95%, respectively, at an absorbed dose of 10 kGy. However, TOC removal in the radiation treatment was less than 5% due to a low transformation of both TPA and EG to $CO_2$. For TPA, gamma-ray treatment largely reduced biodegradability($BOD_5/COD$) by degrading TPA to non-biodegradable organic acids. This implies that the change of biodegradability should be considered when the radiation treatment is combined with conventional biological techniques. A weight-loss wastewater containing TPA and EG was also purified by gamma-ray treatment. Extraordinarily, biodegradability of the wastewater was increased at a low dose of 1 kGy. Though underlying mechanism was not clearly identified, this result stresses the effect of wastewater composition and absorbed dose on the biodegradability change.

Decomposition of Antibiotics (Cefaclor) by Ionizing Radiation: Optimization and Modeling Using a Design of Experiment (DOE) Based on Statistical Analysis

  • Yu, Seung-Ho;Chang, Soon-Woong;Lee, Si-Jin;Cho, Il-Hyoung
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.81-87
    • /
    • 2009
  • The decomposition of antibiotics (cefaclor) by gamma irradiation in aqueous solutions was experimentally evaluated. To obtain a mutual interaction between two factors (antibiotics concentrations and radiation doses) and to optimize these factors during the process, experimental design and statistical analysis were employed. The decomposition capability of the gamma radiation was also mathematically described as a function of cefaclor concentration and gamma-ray dose using the statistical analysis. The results showed that the cefaclor concentration ($X_1$) in the response $Y_1$ (Reduction of cefaclor concentration) and gamma-ray dose ($X_2$) in the response $Y_2$ (Removal efficiency (%) of cefaclor concentration) exhibited a significantly positive effect, whereas gamma-ray dose ($X_2$) in the response $Y_1$ showed a significantly negative effect. The estimated ridge of maximum responses and optimal conditions for $Y_1$:($X_1$,$X_2$)=(25 mg/L, 350 Gy) and $Y_2$:($X_1$,$X_2$)=(21 mg/L, 565 Gy) using canonical analysis were 4.37 mg/L of reduction of cefaclor concentration and 98.35% of removal efficiency of cefaclor concentration, respectively. The measurement values agreed well with the predicted ones, thereby confirming the suitability of the model for $Y_1$ and $Y_2$ and the success of the experimental design in optimizing the conditions of the gamma irradiation process.

Changes in physicochemical characteristics of cation exchange resins by high dose gamma irradiation

  • Seung Joo Lim;Wang Kyu Choi;Mansoo Choi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1777-1780
    • /
    • 2024
  • Chemical and thermal characteristics of cation exchange resins were examined after irradiation of gamma rays. The degradation of cation exchange resins was mainly observed at doses of up to 500 kGy, whereas the balance between degradation and cross-linking reactions was sustained at 700 kGy. While the carbon content decreased significantly up to a maximum dose of 500 kGy, it showed an increase at higher doses. Conversely, the oxygen content exhibited a decrease in contrast to the carbon content. The continuous reduction in sulfur content was attributed to the decomposition of sulfonic groups. Gamma-ray irradiation caused a decrease in the initiation temperature of sulfonic groups and PS-DVB, but unlike the chemical properties of cation exchange resins due to gamma-ray irradiation, the thermal properties of resins remained unaffected.

Effects of Low Dose Ionizing Radiation on the Growth and Yield of Soybean Cultivars (저선량의 이온화방사선이 대두품종의 생육과 수량에 미치는 효과)

  • Kim, Jae-Sung;Lee, Young-Keun;Song, Hi-Sup;Park, Hong-Sook;Kim, Jeong-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.66-69
    • /
    • 1999
  • To investigate the hormetic effect of the low dose ${\gamma}-ray$, soybean(Glycine max L.) seeds of three cultivars (Hwangkeumkong, Bansakong, S900 cv.) were irradiated with the dose of 0.5∼20.0 Gy and cultivated in the experimental field. The hormetic effects of the low dose ${\gamma}-ray$ on the growth of field experiment were different from each cultivar, that is, more effective in the S900 cultivar of black seedcoat color than in the Hwangkeumkong and Bangsakong of yellow ones. The germination rate of S900 cultivar increased about 30% in the 0.5Gy irradiated group compared with that of the control. The plant height of the 4.0Gy irradiated group in both Bangsakong and S900 cultivar increased 15% more than that of the control. Grain yield and the number of pod in 1.0 Gy and 4.0 Gy irradiated group of S900 cultivar and that of 2.0 Gy irradiated group of Hwangkeumkong increased 25 and 35% on the average, respectively.

  • PDF

Influence of the Low Dose ${\gamma}$-ray Radiation on the Old Seed Germination and Growth of Chinese Cabbage (묵은 배추종자의 발아와 생육에 미치는 저선량 ${\gamma}$선 효과)

  • 김재성;이영근;백명화;이영복;박영선
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.1
    • /
    • pp.11-15
    • /
    • 1999
  • To investigate the stimulating effects of the low- dose radiation, the seeds of chinese cabbages (Brassica campestris L. cv. Hanyoreum and cv. Tropic emperor) were irradiated at the dose of 0.5 Gy~20 Gy with the ${\gamma}$-ray radition. In case of ‘Hanyoreum’cultivar, there were no significant promoting effects on the germination rate except the 0.5 Gy irradiated group. The increase in seedling height and fresh weight in 8 Gy and 12 Gy irradiated groups was 20% and 40%, respectively, which suggested the stimulating effect of the low-dose radiation on the early growth. In case of‘Tropic emperor’cultivar, the germination rate of 1 Gy irradiated group increased approximately 10% and the seedling height and fresh weight of 1 Gy and 12 Gy irradiated group in the greenhouse 20% on the average, and plant height and fresh weight of 0.5 Gy and 4 Gy irradiated group in the field increased 10% and 20% on the average, respectively.

  • PDF

Plasmid DNA damage by neutron and ${\gamma}$-ray in the presence of BSH (BSH 존재시 중성자 및 ${\gamma}$-ray 조사에 따른 plasmid DNA의 손상)

  • Chun, Ki-Jung;Seo, Won-Sook
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.2
    • /
    • pp.65-68
    • /
    • 2006
  • In this study, the extent of plasmid DNA damage was observed according to concentration of BSH(Boron Sulfhydryl Hydride) and irradiation doses of neutron and ${\gamma}$-ray. The plasmid used was both pBR 322 (2870 bp) and ${\Phi}X174$ RF(5386 bp) DNA. Plasmid DNA damage by irradiation in the presence of BSH was analyzed by agarose gel electrophoresis. In the neutron experiment, DNA damage of both plasmid DNAs was increased according to increasing the concentration of BSH and neutron doses. But in the ${\gamma}$-ray experiment, there appeared no dose dependency as compared to the neutron experiment. The extent of the plasmid DNA damage in the presence of BSH was somewhat different according to irradiation by neutron or ${\gamma}$-ray.

Comparison of Effects of Ultraviolet and $^{60}$ Co Gamma Ray Irradiation on Nylon 6 Mono-filaments

  • Ohtsuka, Mika;Suzuki, Yoshino;Sakai, Tetsuya;Netravali, Anil N.
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.225-229
    • /
    • 2004
  • The effect of UV and $^60{Co}$ gamma radiations on the physical and mechanical properties of nylon 6 mono-filaments with different draw ratios has been studied. Specimens were exposed to either up to 25 Mrad of gamma or up to 168 hrs of intense UV irradiation. The results show that nylon mono-filaments exposed to gamma rays, with much higher quantum energy than UV, undergo a larger extent of molecular chain scission. Higher irradiation dose also results in the production of insoluble, macroscopic three-dimensional cross-linked network structure. The amorphous regions with a lower density of cohesive energy (lower molecular orientation) show a higher extent of cross linking reaction whereas amorphous regions with a higher density of cohesive energy (higher orientation) show higher extent of chain scission reaction, irrespective of UV ray or gamma ray irradiation.

Polysaccharide Extracted from Rheum Tanguticum Prevents Irradiation-induced Immune Damage in Mice

  • Liu, Lin-Na;Guo, Zhi-Wei;Zhang, Yan;Qin, Hua;Han, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1401-1405
    • /
    • 2012
  • Aim: To investigate the protective effect of purified fraction 1 polysaccharide extracted from Rheum tanguticum RTP1 on irradiation-induced immune damage in mice. Methods: Kunming mice were randomly divided into five groups: normal group (NC), irradiation control group (IC), RTP1 low dose (200 mg/kg), middle dose (400 mg/kg) and high dose (800 mg/kg) groups. RTP1 was adminstered by the gastric route for 14 d, mice in the NC and IC groups being given by 0.9% sodium chloride solution in the same way. The mice in all groups except NC group were irradiated with 2.0 Gy $^{60}Co{\gamma}$-ray on the fourteenth day. Immune indives of non-specific immune function, cellular immunity and humoral immunity were assessed at the 24th hour after radiation. Results: Compared with the IC group, the spleen index, thymus index, rate of carbon clearance, phagocytic function of macrophages, lymphocyte proliferation, hemolysin value of blood serum and NK activity were increased markedly (P < 0.05 or P < 0.05). Conclusion: RTP1 has an obvious protective effects on damage in ${\gamma}$-ray radiated mice.

Improvement of Mutation Rate and Reduction of Somatic Effects by Double Treatment of Chemical Mutagens in Barley (화학 돌연변이제 이중처리에 의한 돌연변이율 향상 및 생장저해 경감)

  • 구본철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.3
    • /
    • pp.348-353
    • /
    • 1996
  • Mutation tachniques inducing more useful mutations and reducing somatic effects need to be improved for crop breeding. Seeds of barley varieties ; Dema, Grosso were treated with two types of mutagens ; 1) chemical treatment: single treatment or double treatment of two mutagens (N-nitroso-N-methylurea ; MNH, Sodium Azide; NaN$_3$) 2) gamma ray irradiation treatment. After treatment, half of seeds were used for germination test and half of seeds were sown to the field. With the higher dose of mutagen both chemical and gamma ray were plants treated, the higher rate of growth reduction rate was in M$_1$ seedling. In chemical treatment, germination rate of seeds, growth rate of coleoptile and root in double treatment of chemical mutagens were better than single treatments, especially in same dose. Growth inhibition rate of plant in double treatment of 1.0mM MNH(0.5mM MNH + 0.5mM MNH), for example, were less than one of plants of single treatment of 1.0mM MNH in pot and petri dish test. Growth reduction rate of culm and fertility rate in M$_1$ plants double treated in same dose of single treatment were also less than single one. With the higher dose of mutagen both chemical and gamma ray were plants treated, the higher frequency of chlorophyll mutants was in M$_2$ seedling. The rate of chlorophyll mutants in double treatment of chemical mutagens were higher than single treatment. Double treatment methods can be a improved method for induction of new good mutants, which were induced more useful mutations and reduced harmful somatic effects.

  • PDF