• Title/Summary/Keyword: gamma emitter

Search Result 15, Processing Time 0.026 seconds

An Activation Analysis of Target("used H218O") for 18FDG Synthesis (18FDG 생산용 타겟("사용 후 H218O")의 방사화 분석)

  • Kang, Bo Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.3
    • /
    • pp.213-219
    • /
    • 2013
  • Currently, about 35 cyclotrons have been operating in South Korea. Most of them are mainly used for the synthesis of radiopharmaceuticals such as $^{18}FDG$, which is a cancer tracer for nuclear medicine. Highly enriched $H_2{^{18}}O$ containing up to 98% of $^{18}O/O$ isotope ratio is used as the target for $^{18}F$ production. The price of the highly enriched $H_2{^{18}}O$ ranges 60~70 USD/g, and all of them have been imported from foreign country in spite of the very expensive price. The target (enriched $H_2{^{18}}O$) is non-radioactive before the proton beam irradiation. But, the post-irradiation target (used $H_2{^{18}}O$) must be managed following the National Radiation Safety Regulations, because it turns into radioactive by the radioactivation of the impurities within the target. Recently, nevertheless of the fast increasing amount of used $H_2{^{18}}O$ in accordance with the increasing number of nuclear medicine cases, any activation analysis on the used $H_2{^{18}}O$ have been conducted yet in Korea. In this research, activation analysis have been conducted to confirm the specific radioactivity(Bq/g) of each radioisotopes within the used $H_2{^{18}}O$. The analysis have been done on the 3 of 20g samples collected from the used $H_2{^{18}}O$ storages at different cyclotron centers. Based on the results, it was confirmed that the "used $H_2{^{18}}O$" contains gamma emitters such as $^{56}Co$, $^{57}Co$, $^{58}Co$, and $^{54}Mn$ as well as the considerable amount of beta emitter $^3H$. It was also confirmed that the only one sample contained over exemption level of gamma emitters while the specific activity of tritium was lower than the exemption level in all samples. The specific activity of radioisotopes were measured different levels in the samples depending on the elapsed time after irradiation. Further study on the activation of the "used $H_2{^{18}}O$" is definitely necessary, nevertheless the as-is results of this research must be useful in establishing a rational "used $H_2{^{18}}O$" management protocol.

An Improved Movable 3 photomultiplier (3PM)-γ Coincidence Counter Using Logical Sum of Double Coincidences in β-Channel for Activity Standardization

  • Hwang, Han Yull;Lee, Jong Man
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.76-80
    • /
    • 2020
  • Background: To improve the measurement accuracy of liquid-scintillation counting for activity standardization, it is necessary to significantly reduce the background caused by thermal noise or after-pulses. We have therefore improved a movable 3 photomultiplier (3PM)-γ coincidence-counting method using the logical sum of three double coincidences for β events. Materials and Methods: We designed a new data-acquisition system in which β events are obtained by counting the logical sum of three double coincidences. The change in β-detection efficiency can be derived by moving three photomultiplier tubes sequentially from the liquid-scintillation vial. The validity of the method was investigated by activity measurement of 134Cs calibrated at the Korea Research Institute of Standards and Science (KRISS) with 4π(PC)β-γ(NaI(Tl)) coincidence counting using a proportional counter (PC) for the β detector. Results and Discussion: Measurements were taken over 14 counting intervals for each liquidscintillation sample by displacing three photomultiplier tubes up to 45 mm from the sample. The dead time in each β- and γ-counting channel was adjusted to be a non-extending type of 20 ㎲. The background ranged about 1.2-3.3 s-1, such that the contributions of thermal noise or after-pulses were negligible. As the β-detection unit was moved away from the sample, the β-detection efficiencies varied between 0.54 and 0.81. The result obtained by the method at the reference date was 396.3 ± 1.7 kBq/g. This is consistent with the KRISS-certified value of 396.0 ± 2.0 kBq/g within the uncertainty range. Conclusion: The movable 3PM-γ method developed in the present work not only succeeded in reducing background counts to negligible levels but enabled β-detection efficiency to be varied by a geometrical method to apply the efficiency extrapolation method. Compared with our earlier work shown in the study of Hwang et al. [2], the measurement accuracy has much improved. Consequently, the method developed in this study is an improved method suitable for activity standardization of β-γ emitters.

Calculation of Absorbed Dose for Immersion in Semi-Infinite Radioactive Cloud...(1) (반무한(半無限) 방사성운(放射性雲)에서의 흡수선량계산(吸收線量計算) - 1. 단일(單一)에너지 감마 방출체(放出體)에 대한 산난광자(散亂光子)스펙트럼의 계산(計算) -)

  • Lee, Soo-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.2
    • /
    • pp.155-159
    • /
    • 1985
  • In general, dose rates for a monoenergetic gamma emitter uniformly distributed in an infinite cloud have been calulated by using the monoenergetic point-isotorpic source kernel technique. The most serious limitation on use of the kernel technique is subjected to the fact that it estimates the dose only at the surface of body. As a result, an alternative method is presented in which estimates of dose rate for immersion in a radioactive cloud are resulted from the scattered photon spectra incident on the surface of body. The results are in excellent agreement with other's. Work is currently in progress to apply these results to immersion dose problems associated with absorbed dose distribution in the MIRD phatom.

  • PDF

Acute Toxicity of DW-166HC (Hlolmium-165-chitosan) in Mice (마우스에서의 DW-166HC (Ho1mium-165-chitosan)에 대한 급성독성)

  • Lee, Won-Yong;Lee, Jin;Moon, Eun-Yi;Nam, Soon-Chul;Lee, Dug-Keun;Yoon, Sung-June
    • Biomolecules & Therapeutics
    • /
    • v.5 no.1
    • /
    • pp.100-105
    • /
    • 1997
  • DW-166HC ($^{166}$Holmium-chitosan) is a complex of $^{166}$Ho, $\beta$- and $\gamma$-ray emitter, and chitosan, a polymer of glucosamine, with radiotherapeutic potential. The current study was performed to determine the acute toxicities of $^{165}$Ho-chitosan in mice by two different routes of administration. The both sex mice were given a single intravenous bolus injection of $^{165}$Ho-chitosan complex at doses of 12, 10, 6, 5 and 4 mg/kg or subcutaneous administration at doses of 600, 500, 400 and 300 mg/kg. Chitosan was dosed to control animals as 16 and 800 mg/kg, intravenously and subcutaneously, respectively. The doses of $_{165}$Ho-chitosan complex were expressed as $_{165}$holmium nitrate pentahydrate and the ratio of $^{165}$Ho$(NO_3)_3$).$5H_2O$ to chitosan was 3/4 Severe convulsion and respiratory failure were followed by death within 10 min after intravenous dosing. Transient unilateral hindlimb hypokinesias were found in two mice of 5 mg/kg dosing group during the study period. No abnormalities were observed during the necropsy of survived animals in intravenous dosing group. Only one male animal was found dead in 500 mg/kg subcutaneously dosed group. Alopecia with or without cutaneous ulcer were found in most mice including control animals. During necropsy, omental adhesion was observed in all dose ranges and enlarged spleen was found in several animals including control group. It is suggested that the acute intravenous >).$LD_{50}s$ for male and female mice were 4.90 and 6.03 mg/kg, respectively. The lowest lethal dose in male was 500 mg/kg by subcutaneous administration.

  • PDF

Effects of 166Holmium and 166Holmium-chitosan Complex(166Ho-CHICO) on Normal Brain of Rats (홀뮴 및 홀뮴-키토산 복합체가 정상 백서 뇌에 미치는 효과에 대한 연구)

  • Sun, Jing He;Joh, Chul W;Ahn, Young Hwan;Park, Chan Hee;Shim, Chull;Park, Kyung Bae;Cho, Kyung Gi
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.10
    • /
    • pp.1309-1315
    • /
    • 2000
  • Objectives : We performed an in vivo experiment to investigate the effect of $^{166}Holmium$ and $^{166}Holmium$-chitosan complex($^{166}Ho$-CHICO) on the normal brain of rats and to determine the sublethal dose of $^{166}Ho$-CHICO. Materials and Methods : $^{166}Ho$ is a beta and gamma ray emitter. $^{166}Ho$-CHICO is a novel radio-pharmaceutical complex with chitosan to facilitate the transport of $^{166}Ho$ obtained from Korea Atomic Energy Research Center(Taejon, Korea). It is in acidic form and becomes gel state at alkaline pH. One hundred and seventy consecutive rats were divided into four groups : $^{166}Ho$ treated(n=50), $^{166}Ho$-CHICO treated(n=57), saline treated(n=5) and chitosan treated(n=5) groups. $^{166}Ho$ and $^{166}Ho$-CHICO were injected into the rat brain stereotactically with various doses of 0.1mCi/$20{\mu}l$, 0.2mCi/$20{\mu}l$, 0.3mCi/$20{\mu}l$, and 0.4mCi/$20{\mu}l$ using an automated microinjector. Nuclear imaging, histopathological and hematological studies were performed in 10 rats in each group at 1 day, 3days, 7 days, 1 month and 3 months after the injections. Results : An infiltration of inflammatory cells and necrotic changes were noted in $^{166}Ho$ treated group at 1 week after the injection. A wedge-shaped tissue defect due to necrosis, lined with infiltrated glial cells in $^{166}Ho$ treated group and a cystic defect lined with reactive astroglial cells in $^{166}Holmium$-CHICO treated group at 3 months after the injection were observed. $^{166}Ho$ alone without chitosan leaked out and caused necrotic lesion on the cerebral surface but $^{166}Holmium$-CHICO treated group did not show this feature. As the dose of $^{166}Ho$ increased, the mortality rates were also increased. The mortality rate of the $^{166}Holmium$-CHICO group was higher than the $^{166}Ho$ treated group at a dose of 0.4mCi/$20{\mu}l$/300g. There was no detectable radioactivity due to the leakage or extravasation from the injected site of the brain on the scintigraphy performed at 1 hour, 24 hours and 48 hours after the injection. There was also no detectable activity of $^{166}Holmium$-CHICO in other organs including spleen, liver and kidney. Conclusions : $^{166}Ho$-CHICO did not leak out to the critical cortical surface of the brain from the injection site and induced radiation changes of the parenchyma around the injection site without cortical damage. The sublethal dose of $^{166}Ho$-CHICO for the normal brain in rats was determined to be 0.2mCi/$20{\mu}l$/300g.

  • PDF