Journal of the Korean Operations Research and Management Science Society
/
v.22
no.3
/
pp.209-222
/
1997
In this paper, we study a bargaining order problem where one buyer sequentially bargains with two sellers whose reservation prices are unknown to the buyer but correlated. Our main question is who the buyer should bargain first with to maximize his expected payoff. This type of problem is widely applicable to business and political situations where one party negotiates with multiple parties sequentially. One of the most important element in a sequential bargaining is "linkage effect" which exists when the aggreement of the previous bargaining affects the outcome of the following bargaining. To examine "linkage effect", we assume that the sellers'objects are similar so that the sellers' reservation prices are correlated. In addition, to consider incomplete information aspect regarding reservation prices, it is assumed that the sellers' reservation prices are unknown to the buyer. That is, we deal with one sided incomplete information case. In our model, there are two stages in each of which the buyer meets one seller. Since we are concerned with the bargaining order, we consider two different bargaining orders. Using game theory, we find a perfect Bayesian equilibrium and compute the buyer's expected payoff for each bargaining order. Finally we identify the advantageous bargaining order for the buyer by comparing the expected payoffs obtained under two different bargaining orders. Our results are as follows: the advantageous bargaining order depends on the prior probability of the seller type. However, in general, the buyer should bargain first with the seller whose object is less valuable to the buyer. The basic reason for our result is that the buyer wants to experiment in the first stage to find out the sellers' reservation prices and in doing so, to minimize the experimental cost and maximize potential gain in case of negotiation failure in the first stage. in the first stage.
Courcoubetis, Costas;Sdrolias, Kostas;Weber, Richard
Journal of Communications and Networks
/
v.18
no.6
/
pp.975-988
/
2016
Large access providers (ISPs) are seeking for new types of business agreements and pricing models to manage network costs and monetize better the provision of last-mile services. A typical paradigm of such new pricing norms is the proliferation of paid peering deals between ISPs and content providers (CPs), while on top of this, some ISPs are already experimenting with usage-based tariffs, usually through data-plans, instead of the typical fixed-based charging. In this work we define as common platform, the infrastructure in which a single ISP transacts with several CPs through peering agreements. In this context, we examine whether, and under which market conditions, the profitability of the involved stakeholders improves when the establishment of this platform is accompanied by a monetary compensation from the CPs to the ISP (paid peering), v.s. a scenario where their deal is a typical settlement-free one. In both cases, we assume that the ISP implements a usage-based access pricing scheme, implying that end-users will pay more for higher transaction rates with the CPs. Our framework captures some of the most important details of the current market, such as the various business models adopted by the CPs, the end-users' evaluation towards the ISP's and CPs' level of investments and the traffic rates per transaction for the offered services. By analysing the equilibrium derived by a leader-follower game, it turns out (among other practical takeaways) that whether or not the profitability of a CP improves, it highly depends on whether its business model is to sell content, or if it obtains its revenue from advertisements. Finally, we extract that consumer surplus is considerably higher under paid peering, which in turn implies improved levels of social welfare.
We present a methodology for modeling and solving the transit frequency design problem with variable demand. The problem is described as a bi-level model based on a non-cooperative Stackelberg game. The upper-level operator problem is formulated as a non-linear optimization model to minimize net cost, which includes operating cost, travel cost and revenue, with fleet size and frequency constraints. The lower-level user problem is formulated as a capacity-constrained stochastic user equilibrium assignment model with variable demand, considering transfer delay between transit lines. An efficient algorithm is also presented for solving the proposed model. The upper-level model is solved by a gradient projection method, and the lower-level model is solved by an existing iterative balancing method. An application of the proposed model and algorithm is presented using a small test network. The results of this application show that the proposed algorithm converges well to an optimal point. The methodology of this study is expected to contribute to form a theoretical basis for diagnosing the problems of current transit systems and for improving its operational efficiency to increase the demand as well as the level of service.
KIPS Transactions on Computer and Communication Systems
/
v.1
no.3
/
pp.133-142
/
2012
Cournot model is one of representative models among many game theoretic approaches available for analyzing competitive market models. Recent years have witnessed various kinds of attempts to model competitive electricity markets using the Cournot model. Cournot model is appropriate for oligopoly market which is one characteristic of electric power industry requiring huge amount of capital investment. When we use Cournot model for the application to electricity market, it is prerequisite to assume the downward sloping demand curve in the right direction. Generators in oligopoly market could try to maximize their profit by exercising the market power like physical or economic withholding. However advanced electricity markets also have demand side bidding which makes it possible for the demand to respond to the high market price by reducing their consumption. Considering this kind of demand reaction, Generators couldn't abuse their market power. Instead, they try to find out an equilibrium point which is optimal for both sides, generators and demand. This paper suggest a quantitative analysis between market variables based on econometrics for estimating demand responses in smart grid environment.
In this paper, a simple game-theoretic entry deterrence model is developed that integrates both limit pricing and predatory pricing. While there have been extensive studies which have dealt with predation and limit pricing separately, no study so far has analyzed these closely related practices in a unified framework. Treating each practice as if it were an independent phenomenon is, of course, an analytical necessity to abstract from complex realities. However, welfare analysis based on such a model may give misleading policy implications. By analyzing limit and predatory pricing within a single framework, this paper attempts to shed some light on the effects of interactions between these two frequently cited tactics of entry deterrence. Another distinctive feature of the paper is that limit and predatory pricing emerge, in equilibrium, as rational, profit maximizing strategies in the model. Until recently, the only conclusion from formal analyses of predatory pricing was that predation is unlikely to take place if every economic agent is assumed to be rational. This conclusion rests upon the argument that predation is costly; that is, it inflicts more losses upon the predator than upon the rival producer, and, therefore, is unlikely to succeed in driving out the rival, who understands that the price cutting, if it ever takes place, must be temporary. Recently several attempts have been made to overcome this modelling difficulty by Kreps and Wilson, Milgram and Roberts, Benoit, Fudenberg and Tirole, and Roberts. With the exception of Roberts, however, these studies, though successful in preserving the rationality of players, still share one serious weakness in that they resort to ad hoc, external constraints in order to generate profit maximizing predation. The present paper uses a highly stylized model of Cournot duopoly and derives the equilibrium predatory strategy without invoking external constraints except the assumption of asymmetrically distributed information. The underlying intuition behind the model can be summarized as follows. Imagine a firm that is considering entry into a monopolist's market but is uncertain about the incumbent firm's cost structure. If the monopolist has low cost, the rival would rather not enter because it would be difficult to compete with an efficient, low-cost firm. If the monopolist has high costs, however, the rival will definitely enter the market because it can make positive profits. In this situation, if the incumbent firm unwittingly produces its monopoly output, the entrant can infer the nature of the monopolist's cost by observing the monopolist's price. Knowing this, the high cost monopolist increases its output level up to what would have been produced by a low cost firm in an effort to conceal its cost condition. This constitutes limit pricing. The same logic applies when there is a rival competitor in the market. Producing a high cost duopoly output is self-revealing and thus to be avoided. Therefore, the firm chooses to produce the low cost duopoly output, consequently inflicting losses to the entrant or rival producer, thus acting in a predatory manner. The policy implications of the analysis are rather mixed. Contrary to the widely accepted hypothesis that predation is, at best, a negative sum game, and thus, a strategy that is unlikely to be played from the outset, this paper concludes that predation can be real occurence by showing that it can arise as an effective profit maximizing strategy. This conclusion alone may imply that the government can play a role in increasing the consumer welfare, say, by banning predation or limit pricing. However, the problem is that it is rather difficult to ascribe any welfare losses to these kinds of entry deterring practices. This difficulty arises from the fact that if the same practices have been adopted by a low cost firm, they could not be called entry-deterring. Moreover, the high cost incumbent in the model is doing exactly what the low cost firm would have done to keep the market to itself. All in all, this paper suggests that a government injunction of limit and predatory pricing should be applied with great care, evaluating each case on its own basis. Hasty generalization may work to the detriment, rather than the enhancement of consumer welfare.
Internet commerce has been growing at a rapid pace for the last decade. Many firms try to reach wider consumer markets by adding the Internet channel to the existing traditional channels. Despite the various benefits of the Internet channel, a significant number of firms failed in managing the new type of channel. Previous studies could not cleary explain these conflicting results associated with the Internet channel. One of the major reasons is most of the previous studies conducted analyses under a specific market condition and claimed that as the impact of Internet channel introduction. Therefore, their results are strongly influenced by the specific market settings. However, firms face various market conditions in the real worlddensity and disutility of using the Internet. The purpose of this study is to investigate the impact of various market environments on a firm's optimal channel strategy by employing a flexible game theory model. We capture various market conditions with consumer density and disutility of using the Internet.
shows the channel structures analyzed in this study. Before the Internet channel is introduced, a monopoly manufacturer sells its products through an independent physical store. From this structure, the manufacturer could introduce its own Internet channel (MI). The independent physical store could also introduce its own Internet channel and coordinate it with the existing physical store (RI). An independent Internet retailer such as Amazon could enter this market (II). In this case, two types of independent retailers compete with each other. In this model, consumers are uniformly distributed on the two dimensional space. Consumer heterogeneity is captured by a consumer's geographical location (ci) and his disutility of using the Internet channel (${\delta}_{N_i}$).
shows various market conditions captured by the two consumer heterogeneities.
(a) illustrates a market with symmetric consumer distributions. The model captures explicitly the asymmetric distributions of consumer disutility in a market as well. In a market like that is represented in
(c), the average consumer disutility of using an Internet store is relatively smaller than that of using a physical store. For example, this case represents the market in which 1) the product is suitable for Internet transactions (e.g., books) or 2) the level of E-Commerce readiness is high such as in Denmark or Finland. On the other hand, the average consumer disutility when using an Internet store is relatively greater than that of using a physical store in a market like (b). Countries like Ukraine and Bulgaria, or the market for "experience goods" such as shoes, could be examples of this market condition.
summarizes the various scenarios of consumer distributions analyzed in this study. The range for disutility of using the Internet (${\delta}_{N_i}$) is held constant, while the range of consumer distribution (${\chi}_i$) varies from -25 to 25, from -50 to 50, from -100 to 100, from -150 to 150, and from -200 to 200.
summarizes the analysis results. As the average travel cost in a market decreases while the average disutility of Internet use remains the same, average retail price, total quantity sold, physical store profit, monopoly manufacturer profit, and thus, total channel profit increase. On the other hand, the quantity sold through the Internet and the profit of the Internet store decrease with a decreasing average travel cost relative to the average disutility of Internet use. We find that a channel that has an advantage over the other kind of channel serves a larger portion of the market. In a market with a high average travel cost, in which the Internet store has a relative advantage over the physical store, for example, the Internet store becomes a mass-retailer serving a larger portion of the market. This result implies that the Internet becomes a more significant distribution channel in those markets characterized by greater geographical dispersion of buyers, or as consumers become more proficient in Internet usage. The results indicate that the degree of price discrimination also varies depending on the distribution of consumer disutility in a market. The manufacturer in a market in which the average travel cost is higher than the average disutility of using the Internet has a stronger incentive for price discrimination than the manufacturer in a market where the average travel cost is relatively lower. We also find that the manufacturer has a stronger incentive to maintain a high price level when the average travel cost in a market is relatively low. Additionally, the retail competition effect due to Internet channel introduction strengthens as average travel cost in a market decreases. This result indicates that a manufacturer's channel power relative to that of the independent physical retailer becomes stronger with a decreasing average travel cost. This implication is counter-intuitive, because it is widely believed that the negative impact of Internet channel introduction on a competing physical retailer is more significant in a market like Russia, where consumers are more geographically dispersed, than in a market like Hong Kong, that has a condensed geographic distribution of consumers.