• Title/Summary/Keyword: galvanic currents

Search Result 14, Processing Time 0.165 seconds

Study on Prevention of Galvanic Corrosion between Carbon Steel Rivets and Graphite Used in Aluminum Matrix Automobiles (알루미늄 기지 자동차에 쓰이는 탄소강 리벳과 그라파이트간의 갈바닉 부식 방지 연구)

  • Seo, Dong-Il;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.128-140
    • /
    • 2017
  • Aluminum alloy matrix may be used for manufacturing lighter automobiles. However, galvanic corrosion may occur between the rivet joint combining aluminum alloy matrix and a CFRP (carbon fiber reinforced plastic) laminate. The possibility of galvanic corrosion may be investigated by measuring galvanic couple currents. Two types of galvanic current measuring methods were used. One method is to use potentiodynamic polarization curves and the other is the ZRA (zero resistance ammeter) method. For galvanic corrosion experiments graphite, a major component of CFRP, was used with carbon steel (rivets) and 6061 aluminum alloys. Regardless of carbon steel, Ni deposited carbon steel, and 316L stainless steels we also investigated the possibility of reduction in galvanic corrosion. Results revealed that even though Ni deposited carbon steel or 316L stainless rivet may slightly increase galvanic current density between those and Al matrix, substitute rivets for carbon steel may be considerably useful for reducing overall galvanic corrosion.

Galvanic Coupling between Carbon Steel and Cr-bearing Rebar in Concrete (콘크리트 내에서의 Cr강방식철근과 보통강재와의 갈바닉 부식에 관한 연구)

  • Tae Sung Ho;Lee Han Seung;Cheong Hai Moon;An Tai Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.479-482
    • /
    • 2005
  • The galvanic currents between carbon steel and Cr-bearing rebars have been studied in concrete subjected to carbonation and chloride attack. The results revealed that in case of SD345 contacted with Cr-bearing rebar in concrete under chloride attack environment and carbonation environment, the corrosion acceleration by galvanic corrosion is not generated. Therefore, Cr-bearing rebar can be used together with the carbon steel in the new establishment structure.

  • PDF

Laboratory Evaluation of Select Methods of Corrosion Prevention in Reinforced Concrete Bridges

  • Pritzl, Matthew D.;Tabatabai, Habib;Ghorbanpoor, Al
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.201-212
    • /
    • 2014
  • Sixteen reinforced concrete laboratory specimens were used to evaluate a number of corrosion prevention methods under an accelerated (6 months) testing program. The use of galvanic thermal sprayed zinc, galvanic embedded anodes, a tri-silane sealer, an acrylic coating, and an epoxy/polyurethane coating was evaluated. The specimens received various treatments prior to exposure to accelerated corrosion. The performance of the treatments was evaluated with respect to corrosion currents, chloride ingress, extent of cracking, severity of rust staining, and visual inspection of the reinforcing steel after the conclusion of testing and dissection. Results indicated that the tri-silane sealer, the conjoint use of galvanic thermal sprayed zinc and epoxy/polyurethane coating, the epoxy/polyurethane coating, and acrylic coating performed better than the other methods tested. Higher chloride concentrations were measured in the vicinity of embedded zinc anodes.

A Galvanic Sensor for Monitoring the External and Internal Corrosion Damage of Buried Pipelines

  • Choi, Yoon-Seok;Kim, Jung-Gu;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.4 no.5
    • /
    • pp.178-190
    • /
    • 2005
  • In order to develop a new corrosion sensor for detecting and monitoring the external and internal corrosion damage of buried pipeline, the electrochemical property of sensors and the correlation of its output to corrosion rate of steel pipe, were evaluated by electrochemical methods in two soils of varying resistivity (5,000 ohm-cm, 10,000 ohm-cm) and synthetic tap water environments. In this paper, two types of galvanic probes were manufactured: copper-pipeline steel (Cu-CS) and stainless steel-pipeline steel (SS-CS). The corrosion behavior in synthetic groundwater and synthetic tap water for the different electrodes was investigated by potentiodynamic test. The comparison of the sensor output and corrosion rates revealed that a linear relationship was found between the probe current and the corrosion rates. In the soil resistivity of $5,000{\Omega}-cm$ and tap water environments, only the Cu-CS probe had a good linear quantitative relationship between the sensor output current and the corrosion rate of pipeline steel. In the case of $10,000{\Omega}-cm$, although the SS-CS probe showed a better linear correlation than that of Cu-CS probe, the Cu-CS probe is more suitable than SS-CS probe due to the high current output.

Monitoring corrosion of reinforced concrete beams in a chloride containing environment under different loading levels

  • Wei, Aifang;Wang, Ying;Tan, Mike Y.J.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.253-267
    • /
    • 2015
  • Corrosion has significant adverse effects on the durability of reinforced concrete (RC) structures, especially those exposed to a marine environment and subjected to mechanical stress, such as bridges, jetties, piers and wharfs. Previous studies have been carried out to investigate the corrosion behaviour of steel rebar in various concrete structures, however, few studies have focused on the corrosion monitoring of RC structures that are subjected to both mechanical stress and environmental effects. This paper presents an exploratory study on the development of corrosion monitoring and detection techniques for RC structures under the combined effects of external loadings and corrosive media. Four RC beams were tested in 3% NaCl solutions under different levels of point loads. Corrosion processes occurring on steel bars under different loads and under alternative wetting - drying cycle conditions were monitored. Electrochemical and microscopic methods were utilised to measure corrosion potentials of steel bars; to monitor galvanic currents flowing between different steel bars in each beam; and to observe corrosion patterns, respectively. The results indicated that steel corrosion in RC beams was affected by local stress. The point load caused the increase of galvanic currents, corrosion rates and corrosion areas. Pitting corrosion was found to be the main form of corrosion on the surface of the steel bars for most of the beams, probably due to the local concentration of chloride ions. In addition, visual observation of the samples confirmed that the localities of corrosion were related to the locations of steel bars in beams. It was also demonstrated that electrochemical devices are useful for the detection of RC beam corrosion.

The Aqueous Corrosion Characteristics of Catenary Materials of Electric Railway System (전차선로 가선재의 수용액 부식 특성)

  • 김용기;장세기;조성일;이재봉
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.2
    • /
    • pp.62-70
    • /
    • 2001
  • Pure copper, Cu-1.1wt%Cd and ACSR(Aluminum Conductor Steel Reinforced) have been used as catenary materials of the electric railway system. Since these materials may be exposed to the corrosive environments like polluted air, acid rain and sea water, it is important to investigate the corrosion rates in various corrosive environments. The aqueous corrosion characteristics of catenary materials in aerated acid, neutral and alkali solutions were studied by using immersion corrosion tests, electrochemical measurements and analytical techniques. In order to examine corrosion characteristics according to the dissolved oxygen content, pH, chloride ion concentration ion, and the addition of Cd to Cu, a series of tests such as potentiodynamic polarization, a.c impedance spectroscopy and galvanic corrosion tests were carried out with these materials. Results showed that the addition of Cd to Cu and chloride ion in the solution have an adverse effects on the resistance to corrosion. Additionally, Galvanic currents between Al and steel wires of ACSR were confirmed by using ZRA(zero resistance ammeter) method.

  • PDF

THE EFFECT OF GALVANIC CURRENT BETWEEN DENTAL RESTORATIONS ON HUMAN SALIVA (치아 수복재에 의한 갈바닉 전류가 인체 타액에 미치는 영향)

  • Kwon, Hyuk-Choon;Um, Chung-Moon;Cho, In-Sik;Ryu, Ju-Hee;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.2
    • /
    • pp.630-638
    • /
    • 1998
  • The purpose of this study was to evaluate the effect of galvanic current between different metallic restorations on human saliva. The rate of salivary flow and concentrations of IgG, IgM, sIgA and lactoferrin were measured. In this study, unstimulated whole saliva collected before restoration was regarded as control group and unstimulated whole saliva collected 10 minutes, 1 day, 1 week, and 1 month after restoration were regarded as experimental groups. Following results were obtained from this study. 1. There were some differences in values of salivary flow rate between experimental groups, but the changes in values compared to those of the control group were not statistically significant(P>0.05). 2. Measurements of major antibacterial components of saliva showed that while the concentrations of IgG and IgM decreased significantly 1 week and 1 month after restoration(P<0.05), changes in values of sIgA and lactoferrin were not statistically significant(P>0.05). 3. In vitro measurements of galvanic currents decreased sharply in the first 20 seconds and thereafter decreased gradually. Galvanic current values measured in the early stages were greatly varied, but after 2 hours, the values in all groups approximated each other.

  • PDF

A Study on Underwater Electro-magnetic Signature Prediction Due to Hull Corrosion of a Naval Ship (함정의 선체 부식에 의한 수중 전자기 신호 예측에 관한 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Ju, Hae-Sun;Jeon, Jae-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.177-185
    • /
    • 2012
  • Corrosion currents flow through the seawater due to the different electrochemical potential between a hull and a propeller under the draft line of ship. Additionally, in order to protect the hull and other sensitive anodic parts of the ship from corrosion, the corrosion protection system, called impressed current cathodic protection(ICCP) equipment has been installed in most naval ships. Those currents could be harmful to the electromagnetic silencing of the naval ship because sea mines are triggered by even a feeble field value. In this paper, we described electric and corrosion related magnetic fields by ship's galvanic corrosion and a corrosion protection system, and prediction results of electric and corrosion related magnetic fields at any depth for the model ship.

Classification of Grid Connected Transformerless PV Inverters with a Focus on the Leakage Current Characteristics and Extension of Topology Families

  • Ozkan, Ziya;Hava, Ahmet M.
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.256-267
    • /
    • 2015
  • Grid-connected transformerless photovoltaic (PV) inverters (TPVIs) are increasingly dominating the market due to their higher efficiency, lower cost, lighter weight, and reduced size when compared to their transformer based counterparts. However, due to the lack of galvanic isolation in the low voltage grid interconnections of these inverters, the PV systems become vulnerable to leakage currents flowing through the grounded star point of the distribution transformer, the earth, and the distributed parasitic capacitance of the PV modules. These leakage currents are prohibitive, since they constitute an issue for safety, reliability, protection coordination, electromagnetic compatibility, and module lifetime. This paper investigates a wide range of multi-kW range power rating TPVI topologies and classifies them in terms of their leakage current attributes. This systematic classification places most topologies under a small number of classes with basic leakage current attributes. Thus, understanding and evaluating these topologies becomes an easy task. In addition, based on these observations, new topologies with reduced leakage current characteristics are proposed in this paper. Furthermore, the important efficiency and cost determining characteristics of converters are studied to allow design engineers to include cost and efficiency as deciding factors in selecting a converter topology for PV applications.

A study on the effect of the external electric type corrosion resistance for the bolt connection in weathering steel box girders. (무도장 내후성 강교량의 Box Girder 내부볼트 연결부에 대한 외부전원식 정기방식효과에 관한 연구)

  • Park Yong-Gul;Kim Hun-Tae;Baek Chan Ho;Choi Jung Youl
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.988-993
    • /
    • 2004
  • This paper considers corrosion problems in the bolt connection of weathering steel box girder bridge using the external electric type corrosion resistance method which resisted to local corrosion in coated steel surface with contacted air. The weathering steel was created a rust itself in the passive state. but a coated box girder type was easily dew form could be made galvanic cell that accelerated corrosion. so that it was ruled by protection coat with some paint. Therefore, it needed that can be applied the external electric type corrosion resistance method in coated surface. As a result of the test of polarization amount had measured that the weathering steel was higher currents than the general steel by about $5\~10\%$. Therefore. an external electric type corrosion resistance method can be used to protect local corrosion in the coated bolt connection of weathering steel box girders effectively.

  • PDF