• 제목/요약/키워드: galvanic corrosion test

검색결과 82건 처리시간 0.024초

Newly Developed BioDegradable Mg Alloys and Its Biomedical Applications

  • 석현광;김유찬;;차필령;조성윤;양석조
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.55.2-55.2
    • /
    • 2012
  • Intensive theoretical and experimental studies have been carried out at Korean Institute of Science and Technology (KIST) on controlling the bio absorbing rate of the Mg alloys with high mechanical strength through tailoring of electrochemical potential. Key technology for retarding the corrosion of the Mg alloys is to equalize the corrosion potentials of the constituent phases in the alloys, which prevented the formation of Galvanic circuit between the constituent phases resulting in remarkable reduction of corrosion rate. By thermodynamic consideration, the possible phases of a given alloy system were identified and their work functions, which are related to their corrosion potentials, were calculated by the first principle calculation. The designed alloys, of which the constituent phases have similar work function, were fabricated by clean melting and extrusion system. The newly developed Mg alloys named as KISTUI-MG showed much lower corrosion rate as well as higher strength than previously developed Mg alloys. Biocompatibility and feasibility of the Mg alloys as orthopedic implant materials were evaluated by in vitro cell viability test, in vitro degradation test of mechanical strength during bio-corrosion, in vivo implantation and continuous observation of the implant during in vivo absorbing procedures. Moreover, the cells attached on the Mg alloys was observed using cryo-FIB (focused ion beam) system without the distortion of cell morphology and its organ through the removal of drying steps essential for the preparation of normal SEM/TEM samples. Our Mg alloys showed excellent biocompatibility satisfying the regulations required for biomedical application without evident hydrogen evolution when it implanted into the muscle, inter spine disk, as well as condyle bone of rat and well contact interface with bone tissue when it was implanted into rat condyle.

  • PDF

3.5% NaCl 수용액 내 TWIP강의 부식거동에 미치는 합금원소 (Cu, Al, Si)의 영향 (Effect of Alloying Elements (Cu, Al, Si) on the Electrochemical Corrosion Behaviors of TWIP Steel in a 3.5 % NaCl Solution)

  • 김시온;황중기;김성진
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.300-311
    • /
    • 2019
  • The corrosion behaviors of twinning-induced plasticity (TWIP) steels with different alloying elements (Cu, Al, Si) in a neutral aqueous environment were investigated in terms of the characteristics of the corrosion products formed on the steel surface. The corrosion behavior was evaluated by measuring potentiodynamic polarization test and electrochemical impedance spectroscopy. For compositional analysis of the corrosion products formed on the steel surface, an electron probe x-ray micro analyzer was also utilized. This study showed that the addition of Cu to the steel contributed to the increase in corrosion resistance to a certain extent by the presence of metallic Cu in discontinuous form at the oxide/steel interface. Compared to the case of steel with Cu, the Al-bearing specimen exhibited much higher polarization resistance and lower corrosion current by the formation of a thin Al-enriched oxide layer. On the other hand, Si addition (3.0 wt%) to the steel led to an increase in grain size, which was twice as large as that of the other specimens, resulting in a deterioration of the corrosion resistance. This was closely associated with the localized corrosion attacks along the grain boundaries by the formation of a galvanic couple with a large cathode-small anode.

Al/Fe 이종금속 접합부의 부식특성 (Corrosion Assessment of Al/Fe Dissimilar Metal Joint)

  • 강민정;김철희;김준기;김동철;김종훈
    • Journal of Welding and Joining
    • /
    • 제32권4호
    • /
    • pp.55-62
    • /
    • 2014
  • The use of light-weight Al alloys in the automotive industry is increasing to meet requirements for fuel efficiency and emission reduction. Joining Al alloy to the conventional steel sheet is also very important issue with the increased use of Al alloy, and several joining processes have been introduced to enhance joining strength between dissimilar metals. This paper deals with a galvanic corrosion in the dissimilar metal joining. Salt spray tests up to 2000 hours were conducted on a self-piercing rivet, spot welded, adhesive bonded and weld-bonded joints, and cross-sections and tensile shear strength according the salt spray duration were analyzed at every 500-hour. Self-piercing rivet joint had relative low initial strength but the joint strength did not change regardless of the salt spray duration. The strength of other joints (spot welded, adhesive bonded and weld-bonded joints) decreased with the increase of salt spray duration and the corrosion behaviour of each joint was discussed.

슈퍼 듀플렉스 스테인리스강 다층용접부의 미세조직 및 공식(Pitting Corrosion)에 미치는 용접열사이클의 영향 (Effect of Welding Thermal Cycle on Microstructure and Pitting Corrosion Property of Multi-pass Weldment of Super-duplex Stainless Steel)

  • 남성길;박세진;나혜성;강정윤
    • Journal of Welding and Joining
    • /
    • 제28권4호
    • /
    • pp.18-25
    • /
    • 2010
  • Super-duplex stainless steels (SDSS) have a good balance of mechanical property and corrosion resistance when they consist of approximately equal amount of austenite and ferrite. The SDSS needs to avoid the detrimental phases such as sigma(${\sigma}$), chi(${\chi}$), secondary austenite(${\gamma}2$), chromium carbide & nitride and to maintain the ratio of ferrite & austenite phase as well known. However, the effects of the subsequent weld thermal cycle were seldom experimentally studied on the micro-structural variation of weldment & pitting corrosion property. Therefore, the present study investigated the effect of the subsequent thermal cycle on the change of weld microstructure and pitting corrosion property at $40^{\circ}C$. The thermal history of root side was measured experimentally and the change of microstructure of weld root & the weight loss by pitting corrosion test were observed as a function of the thermal cycle of each weld layer. The ferrite contents of root weld were reduced with the subsequent weld thermal cycles. The pitting corrosion was occurred in the weld root region in case of the all pitted specimen & in the middle weld layer in some cases. And the weight loss by pitting corrosion was increased in proportional to the time exposed at high temperature of the root weld and also by the decrease of ferrite content. The subsequent weld thermal cycles destroy the phase balance of ferrite & austenite at the root weld. Conclusively, It is thought that as the more subsequent welds were added, the more the phase balance of ferrite & austenite was deviated from equality, therefore the pitting corrosion property was deteriorated by galvanic effect of the two phases and the increase of 2nd phases & grain boundary energy.

수중 용접봉으로 용접한 누수배관 용접부위의 부식 특성 평가 (Evaluation of Corrosion Characteristics on Welding Zone of Leakage SeawaterPipe Welded by Underwater Welding Electrode)

  • 문경만;이성열;김윤해;이명훈;김진경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1240-1247
    • /
    • 2008
  • Leakage trouble on the sea water pipeline in engine room is often resulted from a localized corrosion due to severe corrosive environment caused by both high speed and high pressure of sea water flowing through the inner pipe. In addition, when the ship is in stand-by or emergency condition, underwater welding to control the leakage of sea water from a hole of its pipe is very important in an industrial safety point of view. In this study possibility of underwater welding to control leakage of sea water and corrosion property of its welding zone were investigated with the electrochemical methods by parameters of welding methods and welding electrodes when underwater welding is achieved with a such case that sea water is being leaked out with a height at 50mm from a hole of $2.5mm{\emptyset}$ of test pipe. Corrosion resistance of weld metal zone is better than the base metal and its hardness is higher than that of the base metal. However corrosion potential of weld metal zone showed a negative value than that of the base metal, therefore weld metal zone is preferentially corroded rather than the base metal by performance of galvanic cell due to difference of corrosion potential between weld metal zone and base metal. Eventually it is suggested that leakage of sea water is successfully controlled by underwater welding,

가스 질화를 통한 316L스테인리스강의 내식성 개선 (Improvement of Corrosion Resistance of 316L Stainless Steel by Gas Nitriding)

  • 조현빈;박세림;김지수;이정훈
    • 전기화학회지
    • /
    • 제27권1호
    • /
    • pp.8-14
    • /
    • 2024
  • 오스테나이트계 스테인리스강은 내식성 및 성형성이 양호하여 다양한 분야에 적용되며, 구리계의 합금을 용가재로 하는 브레이징을 통하여 다양한 형상의 제품으로 가공되어 활용되고 있다. 이때, 구리 기반의 용가재와 스테인리스강의 계면에서 갈바닉 셀을 형성하여 부식을 촉진할 수 있으며, 확산을 통해 스테인리스강에 고용 시 형성되는 구리 과다 영역(Cu-rich region)은 공식 발생의 기점이 되어 내식성을 저하시킨다. 본 연구에서는 브레이징이 적용된 스테인리스강의 내식성을 개선하고자, AISI 316L 스테인리스강에 암모니아 가스를 이용한 질화처리를 적용하였다. 질화처리한 시편은 처리 온도가 증가함에 따라 두께가 증가하고 표면 경도가 높아졌다. 동전위분극시험을 통해 내식성을 평가한 결과 질화층 내 고용된 질소의 용출 및 부동태 거동으로 모재대비 내식성이 개선되었지만 처리온도가 높아 크롬질화물(CrN) 분율이 증가하는 경우 내식성이 감소하였다.

저순도 Al지금을 사용한 Al-Zn-In-Mg계 Al합금 유전양극의 특성에 관한 연구 (A study of galvanic characteristics of aluminium alloy anode in the Al-Zn-In-Mg system made of the low purity aluminium ingot)

  • 김원녕;김기준;김영대
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.240-249
    • /
    • 1985
  • This paper presents the results of the galvanic anode's characteristicsin the Al-Zn-In-Mg and Al-Zn-In-Mg system anodes used aluminium ingot of low purity, 99.5% grade. The results of thses performance tests are as follows: 1) Zn, In and Mg are an available elements to improve the performance of Aluminium alloy anodes. 2) When the range of zinc content in the Al-Zn-In-Mg system anode is 2-5% the more zinc content, the more improve the anode performance. 3) Al-Zn-In-Mg system anode requires a long term over 50 days for the performance test. 4) The composition of Al-Zn-In-Mg system anode which shows the most excellent performance is Al-(2-3%) Zn-(0.02%) In-(1.0%) Mg. 5) When the Al-Zn-In-Mg system anode is annealed for an hour in 500 to 550 .deg. C, the anode performance is improved. 6) The lower average potential and the better corrosion pattern in the Al-Zn-Mg, Al-Zn-In and Al-Zn-In-Mg system anodes, the more current efficiency is improved.

  • PDF

전기화학적 전착기법을 활용한 콘크리트의 인공 균열치유에 관한 실험적 연구 (Experimental Study on Artificial Crack Healing for Concrete Using Electrochemical Deposition Method)

  • 이창홍;송하원
    • 콘크리트학회논문집
    • /
    • 제21권4호
    • /
    • pp.409-417
    • /
    • 2009
  • 이 연구에서는 인공균열치유방법으로서 전기화학적 전착기법을 활용한 균열치유에 관한 실험연구를 통해 부 식모니터링의 관점에서 자기균열치유 및 인공균열치유의 비교분석을 수행하였다. 이를 위해 가압전류의 특성 분석, 갈 바닉 전류의 비교분석, 선형분극저항의 비교분석 및 치유전과 치유후의 균열 치유 향상도를 사진화상 분석기법을 통한 정량화 비교로서 수행하였다. 연구결과로부터, 가압전류 모니터링에서 고정 가압전류에 따른 전압의 결과는 시간의 경 과에 따라 일정부분까지 증가하다가 수렴하는 것을 알 수 있었고, 갈바닉 전류 측정에 의해 인공균열치유의 경우가 자 기균열치유에 비해 더욱 넓은 범위의 전류 vs. 전압 범위 분포를 보여 부식저항성을 안정화하고 있음도 확인하였다. 한 편 사진 화상 분석기법을 통해서는 인공균열치유 기법의 경우가 약 1.63배 자기균열치유에 비해 균열치유 향상효과를 가지는 것으로 분석되었다.

AL계 희생양극에 의한 2종스테인리스 강축의 음극방식 실용화 연구 (Study of Practical Cathodic Protection of 2nd Class Stainless Steel Shaft by means of Al Sacrificial Anode)

  • 손영태;이명훈;이희준
    • 선박안전
    • /
    • 통권22호
    • /
    • pp.34-53
    • /
    • 2007
  • In the case of hull material. large sized merchant ships are made of steel, on the other hand FRP or wood are used for small sized fishing boats. At present in Korea approximately 88,500 fishing boats are in operation of which 70% are made of FRP In the meantime, stainless steel is frequently used as shaft materials of the small-size FRP fishing boat. Namely, the kinds of shaft materials are STS 304(18Cr-8Ni), STS 316(18Cr-12Ni-2.5Mo steel) and STS 630(17Cr-Ni-Nb steel)etc. Among these things, STS 304 which is the cheapest and having ordinary corrosion resistance is most widely used as 2nd class shaft material. But, using STS 304 for shaft system material of the small-size FRP fishing boat on seawater environments entails a severe corrosion which causes shaft system troubles. Particularly, the corrosions tend to be concentrated of the stern and bow side, propeller shaft surface of inside of stern tube and the boat having no stern cooling pipe line system. As a solution for those problems, research on the ways to mitigate corrosion on the part of 2nd class stainless steel shaft have been undertaken. In the result, not only clarification for the reason of corrosion of the part of stainless steel shaft used mainly for the small-size FRP fishing boat was done, but also most optimal corrosion protection system was developed by experimenting shaft's protection simulation based of the electrochemical cathodic protection principle. In addition, verification through the field test on the optimal cathodic corrosion protection method by means of aluminum sacrificial anode was carried out. In this study, effective and economical shaft's protection system is suggested to the small-size FRP fishing boat operator by substantiating the results obtained from the research on the optimal cathodic protection.

  • PDF