• Title/Summary/Keyword: galena

Search Result 175, Processing Time 0.024 seconds

Lead-Zinc-Tin-Silver Mineralization of Tangguanpu Mine, Hunan Province, China: Fluid Inclusion and Sulfur Isotope Studies (중국 호남성 당관포 광산의 연-아연-주석-은 광화작용: 유체포유물 및 황동위원소 연구)

  • 허철호;윤성택;소칠섭
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.157-166
    • /
    • 2001
  • Numerous base-metal bearing hydrothermal quartz vein deposits occur in the Hunan province of southern China. The Tangguanpu lead-zinc-tin-silver mine is the major producer among these deposits. Lead-zinc-tin-silver mineralization occurs in a single stage of massive quartz veins which filled fractures in fault zones within Paleozoic metasedimentary rocks. Sphalerite, chalcopyrite, galena, pyrite, arsenopyrite and pyrrhotite are the principal sulphide minerals in the Tangguanpu lead-zinc ores with minor amounts of tin- and antimony-bearing sulphides (stannite, teallite, boulangerite and tetrahedrite). Based on the iron and zinc partitioning between coexisting stannite and sphalerite, the formation temperature for this mineral assemblage range from 300$^{\circ}$ to 330$^{\circ}$C, which relatively agree with the upper part of homogenization temperature of fluid inclusion in quartz (20T-358$^{\circ}$C). Fluid inclusion data show that main lead-zine-tin-silver mineralization occurred from $H_{2}O$-NaCl fluids with relatively low salinities (11.2-7.3 wl.% eg. NaCI) at temperatures between 207$^{\circ}$ and 358$^{\circ}$C. The relationship between homogenization temperature and salinity suggests a history of cooling and dilution followed by initial boiling. Evidence of initial fluid boiling may indicate the fluid trapping pressures of 180 bars. The ${\delta}^{34}S{{\Sigma}S}$ values of -5.0 to 1.1 %, indicate an igneous source of sulfur in the Tangguanpu lead-zinc-tin-silver hydrothermal fluids.

  • PDF

Geochemical Enrichment and Migration of Environmental Toxic Elements in Stream Sediments and Soils from the Samkwang Au-Ag Mine Area, Korea (삼광 금-은광산 일대의 하상퇴적물과 토양내 함유된 독성원소의 지구화학적 부화와 이동)

  • Lee, Chan Hee;Lee, Byun Koo;Yoo, Bong-Cheal;Cho, Aeran
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.111-125
    • /
    • 1998
  • Dispersion, migration and enrichment of environmental toxic elements from the Samkwang Au-Ag mine area were investigated based upon major, minor and rare earth element geochemistry. The Samkwang mine area composed mainly of Precambrian granitic gneiss. The mine had been mined for gold and silver, but closed in 1996. According to the X-ray powder diffraction, mineral composition of stream sediments and soils were partly variable mineralogy, which are composed of quartz, orthoclase, plagioclase, amphibole, muscovite, biotite and chlorite, respectively. Major element variations of the host granitic gneiss, stream sediments and soils of mining and non-mining drainage, indicate that those compositions are decrese $Al_2O_3$, $Fe_2O_3$, MgO, $TiO_2$, $P_2O_5$ and LOI with increasing $SiO_2$ respectively. Average compositional ranges (ppm) of minor and/or environmental toxic elements within those samples are revealed as As=<2-4500, Cd=<1-24, Cu=6-117, Sb=1-29, Pb=17-1377 and Zn=32-938, which are extremely high concentrations of sediments from the mining drainage (As=2006, Cd=l1, Cu=71, Pb=587 and Zn=481 ppm, respectively) than concentrations of the other samples and host granitic gneiss. Major elements (average enrichment index=6.53) in all samples are mostly enriched, excepting $SiO_2$, $Na_2O$ and $K_2O$, normalized by composition of host granitic gneiss. Rare earth element (average enrichment index=2.34) are enriched with the sediments from the mining drainage. Minor and/or environmental toxic elements within all samples on the basis of host rock were strongly enriched of all elements (especially As, Br, Cu, Pb and Zn), excepting Ba, Cr, Rb and Sr. Average enrichment index of trace elements in all samples is 15.55 (sediments of mining drainage=37.33). Potentially toxic elements (As, Cd, Cr, Cu, Ni, Pb, and Zn) of the samples revealed that average enrichment index is 46.10 (sediments of mining drainage=80.20, sediments of nonmining drainage=5.35, sediments of confluent drainage=20.22, subsurface soils of mining drainage=7.97 and subsurface soils of non-mining drainage=4.15). Sediments and soils of highly concentrated toxic elements are contained some pyrite, arsenopyrite, sphalerite, galena and goethite.

  • PDF

Geopung Copper Deposit in Ogcheon, Chungcheongbuk-do: Mineralogy, Fluid Inclusion and Stable Isotope Studies (거풍구리광상: 산출공물, 유체포유물 및 안정동위원소 연구)

  • Yoo, Bong-Chul;You, Byoung-Woon
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.193-201
    • /
    • 2011
  • The Geopung Cu deposit consists of two subparallel quartz veins that till the NE-trending fissures in Triassic Cheongsan granite. The quartz veins occur mainly massive with partially cavity and breccia. They can be followed along strike for about 500 m and varies in thickness from 0.2 to 2.2 m. Based on the mineralogy and paragenesis of veins, mineralization of quartz veins can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals such as sericite, pyrite, quartz, chlorite, clay minerals and sulfides such as pyrite, arsenopyrite, pyrrhotite, marcasite, sphalerite, stannite, chalcopyrite and galena. Supergene stage is composed of geothite. Fluid inclusion data from quartz indicate that homogenization temperatures and salinity of hypogene stage range from 163 to $356^{\circ}C$ and from 0.2 to 7.2 wt.% eq. NaCl, respectively. They suggest that ore forming fluids were progressively cooled and diluted from mixing with meteoric water. Sulfur (${\delta}^{34}S$: 4.3~9.2‰) isotope composition indicates that ore sulfur was derived from mainly magmatic source although there is a partial derivation from the host rocks. The calculated oxygen (${\delta}^{18}O$: 0.9~4.0‰) and hydrogen (${\delta}D$: -86~-69‰) isotope compositions suggest that magmatic and meteoric ore fluids were equally important for the formation of the Geopung Cu deposit and then overlapped to some degree with another type of meteoric water during mineralization.

Fluid Inclusion and Stable Isotope Studies of Mesothermal Gold Vein Deposits in Metamorphic Rocks of Central Sobaegsan Massif, Korea: Youngdong Area (소백산 육괴 중부 지역의 변성암에서 산출되는 중온형 금광상에 대한 유체 포유물 및 안정동위원소 연구. 영동지역)

  • Chip-Sup So
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.561-573
    • /
    • 1999
  • Mesothermal gold deposits of the Heungdeok, Daewon and Ilsaeng mines in the Youngdong area occur in fault shear zones in Precambrian metamorphic rocks of central Sobaegsan Massif, Korea, and formed in single stage of massive quartz veins (0.3 to 3 m thick). Ore mineralogy is simple, consisting dominantly of pyrrhotite, sphalerite and galena with subordinate pyrite, chalcopyrite, electrum, tetrahedrite and native bismuth. Fluid inclusion data indicate that hydrothermal mineralization occurred at high temperatures (>240$^{\circ}$ to 400$^{\circ}$C) from $H_{2}O-CO_{2}(-CH_{4})$-NaCI fluids with salinities less than 12 wt. % equiv. NaC!. Fluid inclusions in vein quartz comprise two main types. These are, in decreasing order of abundance, type I (aqueous liquid-rich) and type II (carbonic). Volumetric proportion of the carbonic phase in type II inclusions varies widely in a single quartz grain. Estimated $CH_4$ contents in the carbonic phase of type II inclusions are 2 to 20 mole %. Relationship between homogenization temperature and salinity of fluid inclusions suggests a complex history of fluid evolution, comprising the early fluid's unmixing accompanying $CO_2$ effervescence and later cooling. Estimated pressures of vein filling are at least 2 kbars. The ore mineralization formed from a magmatic fluid with the ${\delta}^{34}S_{{\Sigma}S}$, ${\delta}^{18}O_{water}$ and ${\delta}D_{water}$ values of -2.1 to 2.2$\textperthousand$, 4.7 to 9.3$\textperthousand$ and -63 to -79$\textperthousand$, respectively. This study validates the application of a magmatic model for the genesis of mesothermal gold deposits in Youngdong area.

  • PDF

Environmental Geochemistry and Heavy Matel Contamination of Ground and Surface Water, Soil and Sediment at the Kongjujuil Mine Creek, Korea (공주제일광산 수계에 분포하는 지하수, 지표수, 토양 및 퇴적물의 환경지구화학적 특성과 중금속 오염)

  • 이찬희
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.611-631
    • /
    • 1999
  • Enviromental geochemisty and heary metal contamination at the Kongjueil mine creek were underaken on the basis of physicohemical properties and mineralogy for various kinds of water (surface, mine and ground water),soil, precipitate and sediment collected of April and December in 1998. Hydrgeochemical composition of the water samples are characterized by relatively significant enricant of Ca+Na, alkiali ions $NO_3$ and Cl inground and surfore water, wheras the mine waters are relatively eneripheral water of the mining creek have the characteristics of the (Ca+Mg)-$(HCO_3+SO_4)$type. The pH of the mine water is high acidity (3.24)and high EC (613$\mu$S/cm)compared with those of surface and ground water. The range of $\delta$D and $\delta^{18}O$ values (relative to SMOW) in the waters are shpwn in -50.2 to -61.6% and -7.0 to -8.6$\textperthousand$(d value=5.8 to 8.7). Using computer program, saturation index of albite, calcite, dolomite in mine water are nearly saturated. The gibbiste, kaolinite and smectite are superaturated in the surface and ground water, respectively. Calculated water-mineral reaction and stabilities suggest that weathing of silicate minerals may be stable kaolinite owing to the continuous water-rock reaction. Geochemical modeling showed that mostly toxic heavy metals may exist larfely in the from of metal-sulfate $(MSO_4\;^2)$and free metal $(M^{2+})$ in nmine water. These metals in the ground and surface water could be formed of $CO_3$ and OH complex ions. The average enrichment indices of water samples are 2.72 of the groundwater, 2.26 of the surface water and 14.15 of the acid mine water, normalizing by surface water composition at the non-mining creek, repectively. Characteristics of some major, minor and rate earth elements (Al/Na, K/Na, V/Ni, Cr/V, Ni/Co, La/Ce, Th/Yb, $La_N/Yb_N$, Co/Th, La/Sc and Sc/Th) in soil and sediment are revealed a narrow range and homogeneous compositions may be explained by acidic to intermediate igneous rocks. And these suggested that sediment source of host granitic gneiss colud be due to rocks of high grade metamorphism originated by sedimentary rocks. Maximum concentrations of environmentally toxic elements in sediment and soil are Fe=53.80 wt.% As=660, Cd=4, Cr=175, Cu=158, Mn=1010, Pb=2933, Sb=4 and Zn=3740 ppm, and extremely high concentrations are found are found in the subsurface soil near the ore dump and precipitates. Normalizing by composition of host granitic gneiss, the average enerichment indices are 3.72 of the sediments, 3.48 of the soils, 10.40 of the precipitates of acid mine drainage and 6.25 of the soils near the main adit. The level of enerichment was very severe in mining drainage sediments, while it was not so great in the soils. mineral composition of soil and sediment near the mining area were partly variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. reddish variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. Reddish brown precipitation mineral in the acid mine drainage identifies by schwertmanite. From the separated mineralgy, soil and sediment are composed of some pyrite, arsenopyite, chalcopyrite, sphalerite, galena, malachite, goethite and various kinds of hydroxied minerals.

  • PDF

Geochemical Studies of Hydrothermal Gold Deposits, Republic of Korea : Yangpyeong-Weonju Area (한반도 열수 금광상의 지화학적 연구 : 양평-원주지역 광화대)

  • So, Chil-Sup;Choi, Sang-Hoon;Lee, Kyeong-Yong;Shelton, Kevin L.
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.1-16
    • /
    • 1989
  • Electrum-galena-sphalerite mineralization of the Yangpyeong-Weonju Au-Ag area was deposited in three stages of quartz and calcite veins which fill fault breccia zones. Fluid inclusion and stable isotope data show that ore mineralization was deposited at temperatures between $260^{\circ}C$ and $180^{\circ}C$ from fluids with salinities between 8.9 and 2.9 equivalent weight percent NaCl. Evidence of boiling indicates pressures of <50 bars, corresponding to depths of 220 to 550 m, respectively, assuming lithostatic and hydrostatic loads. Au-Ag deposition was likely a result of bolling coupled with cooling. Within stages I and II there is an apparent increase in ${\delta}^{34}S$ values of $H_2S$ with paragenetic time ; early -1.4~2.7‰ to later 6.6-9.2‰. The progressively heavier $H_2S$ values can be generated through isotopic re-equilibration in the ore fluid following removal of $H_2S$ by boiling or precipitation of sulfides. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values. Comparison of these values with those of other Korean Au-Ag deposits reveals a relationship between depth and degree of water-rock interaction. All investigated Korean Jurassic and Cretaceous gold-silver-bearing deposits have fluids which are dominantly evolved, meteoric water, but on1y deeper systems (${\geq}1.25km$) are exclusively gold-rich.

  • PDF

The Effective Recovery of Gold from the Invisible Gold Concentrate Using Microwave-nitric Acid Leaching Method (마이크로웨이브-질산침출방법에 의한 비가시성 금의 회수율 향상)

  • Lee, Jong-Ju;Myung, Eun-Ji;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.185-200
    • /
    • 2019
  • This study aimed to liberate gold from invisible gold concentrate (Au = 1,840.00 g/t) through microwave nitric acid leaching experiments. For the purpose, this study conducted microwave-nitric acid leaching experiments and examined nitric acid concentration effect, microwave leaching time effect and sample addition effect. The results of the experiments were as follows: Au (gold) contents were not detected in all of the microwave leaching conditions. In the insoluble-residue, weight loss rate tended to decrease as the nitric acid concentration, microwave leaching time and sample addition increased. In an XRD analysis with solid-residue, it was suggested that gypsum and anglesite were formed due to dissolution of calcite and galena by nitric acid solution. When a fire assay was carried out with insoluble-residue, it was discovered that gold contents of the solid-residue were 1.3 (Au = 2,464.70 g/t) and 28.8 (52,952.80 g/t) times more than those of concentrate. But in the gold contents recovered, a severe gold nugget effect appeared. It is expected that the gold nugget effect will decrease if a sampling method of concentrate is improved in the microwave-nitric acid leaching experiments and filtering paper with smaller pore size is used for leaching solution and burned filter paper is used for sampling in lead-fire assay.

Spatio-Temporal Variation of Polymetallic Mineralization in the Wooseok Deposit (우석광상 다금속 광화작용의 시공간적 특성변화)

  • Im, Heonkyung;Shin, Dongbok;Jeong, Junyeong;Lee, Moontaek
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.493-507
    • /
    • 2018
  • The Wooseok deposit in Jecheon belongs to the Hwanggangri Mineralized Distict of the northeastern Ogcheon Metamorphic Belt. Its geology consists mostly of limestone of the Choseon Supergroup and the Cretaceous Muamsa granite intruded at the eastern area of the deposit. The deposit shows vertical occurrence of skarn and hydrothermal vein ores with W-Mo-Fe and Cu-Pb-Zn mineralization and skarn is developed only at lower levels of the deposit. Skarn minerals are replaced or cut by ore minerals in paragenetic sequence of magnetite-hematite, molybdenite-scheelite-wollframite, and higher abundances of pyrrhotite-chalcopyrite-pyrite-sphalerite-galena. Garnet has chemical compositions of $Ad_{65.9-97.8}Gr_{0.3-32.0}Pyr_{0.9-3.0}$, corresponding to andradite series, and pyroxene compositions are $Hd_{4.5-49.7}Di_{42.3-93.9}Jo_{0.5-7.9}$, prevailing in diopside compositions, both of which suggest oxidized conditions of skarnization. On the FeS-MnS-CdS ternary diagram, FeS contents of sphalerite in vein ores decrease with increasing MnS contents from bottom to top levels, possibly relating to W mineralization in deep and Pb-Zn mineralization in shallow level. Sulfur isotope values of sulfide minerals range from 5.1 to 6.8‰, reflecting magmatic sulfur affected by host rocks. W-Mo skarn and Pb-Zn vein mineralization in the Wooseok deposit were established by spatio-temporal variation of decreasing temperature and oxygen fugacity with increasing sulfur fugacity from bottom to top levels.

Occurrence and Chemical Composition of Minerals from the Pallancata Ag Mine, Peru (페루 Pallancata 은 광산에서 산출되는 광물들의 산상 및 화학조성)

  • Yoo, Bong Chul;Acosta, Jorge
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.87-102
    • /
    • 2019
  • Pallancata Ag mine is located at the Ayacucho region 520 km southeast of Lima. The geology of mine area consists of mainly Cenozoic volcanic-intrusive rocks, which are composed of tuff, andesitic lava, andesitic tuff, pyroclastic flow, volcano clasts, rhyolite and quartz monzonite. This mine have about 100 quartz veins in tuff filling regional faults orienting NW, NE and EW directions. The Ag grades in quartz veins are from 40 to 1,000 g/t. Quartz veins vary from 0.1 m to 25 m in thickness and extend to about 3,000 m in strike length. Quartz veins show following textures including zonation, cavity, massive, breccia, crustiform, colloform and comb textures. Wallrock alteration features including silicification, sericitization, pyritization, chloritization and argillitization are obvious. The quartz veins contain calcite, chalcedony, adularia, fluorite, rutile, zircon, apatite, Fe oxide, REE mineral, Cr oxide, Al-Si-O mineral, pyrite, sphalerite, chalcopyrite, galena, electrum, proustite-pyrargyrite, pearceite-polybasite and acanthite. The temperature and sulfur fugacity ($f_{s2}$) of the Ag mineralization estimated from the mineral assemblages and mineral compositions are ranging from 118 to $222^{\circ}C$ and from $10^{-20.8}$ to $10^{-13.2}atm$, respectively. The relatively low temperature and sulfur-oxygen fugacities in the hydrothermal fluids during the Ag mineralization in Pallancata might be due to cooling and/or boiling of Ag-bearing fluids by mixing of meteoric water in the relatively shallow hydrothermal environment. The hydrothermal condition may be corresponding to an intermediate sulfidation epithermal mineralization.

Manufacturing technique and provenance Analysis of Bronze Artefacts excavated from Pungnap earthen fortress (풍납토성 출토 청동유물의 제작기술 및 납 원료의 산지추정)

  • Han, Woo Rim;Kim, So Jin;Han, Min-su;Hwang, Jin-ju;Lee, Eun-woo
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.2
    • /
    • pp.110-119
    • /
    • 2015
  • Bronzes, Earthenwares and various artifacts were excavated from Pungnap earthen fortress in the early Baekje age in Korea. This study was performed in order to identify the manufacture technology of bronze artefacts and provenance of lead in bronzes. Microstructure and chemical composition results show that 3 of them are Cu-Sn-Pb alloys in which an intentional lead addition was carried out and one is tin bronze showing straight twin structure within crystal grains. Also $CuFeS_2$ or $Cu_5FeS_4$ was used as raw materials through the detection of S and Fe as trace elements. The lead isotope results could be matched with one of the zones of southern Korea and China on the East Asian map. This results shows that data were plotted either in zone 2 or zone 3 of the South Korean galena map. However, one of bronze artifacts was matched with the zone of Northern China.