• Title/Summary/Keyword: galaxies: emission lines

Search Result 70, Processing Time 0.024 seconds

The Mid-IR Properties of Early Type Galaxies with Positive Optical Color Gradients

  • Park, Jintae;Shim, Hyunjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.53.2-53.2
    • /
    • 2014
  • Radial color gradient of early type galaxies (ETGs) is a key tool for studying the evolution of these galaxies. In this work, we investigated whether ETGs having negative or positive color gradients show any distinguishable characteristics in the galaxy properties. We selected sample of 211 ETGs at 0.01 < z < 0.5 in the Spitzer FLS field, then we constructed u-R color gradients. We obtained the stellar mass, specific star formation rate and fluxes of emission lines of each ETG from MPA-JHU DR7 catalog. Spitzer IRAC and MIPS 24 micron data were used to detect dust emission from the ETGs. Preliminary result shows that less massive galaxies are likely to have positive color gradients, which is probably due to the ongoing star formation in the galaxy core. Almost all AGNs have negative color gradients. This probably is because AGNs are located in relatively massive galaxies with little ongoing star formation. There exists a marginal difference in the percentage of galaxies with PAH emission between ETGs having positive color gradient and negative color gradient. This also supports that ETGs with positive color gradient are galaxies having enhanced star formation.

  • PDF

DETECTION OF Hα EMISSION FROM z>3.5 GALAXIES WITH AKARI-FUHYU NIR SPECTROSCOPY

  • Sedgwick, Chris;Serjeant, Stephen;Pearson, Chris;Takagi, Toshinobu;Matsuhara, Hideo;Wada, Takehiko;Lee, Hyung Mok;Im, Myungshin;Jeong, Woong-Seob;Oyabu, Shinki;White, Glenn J.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.357-360
    • /
    • 2012
  • This paper presents $H{\alpha}$ emission line detections for four galaxies at z > 3.5 made with AKARI as part of the FUHYU mission program. These are the highest-redshift $H{\alpha}$ detections to date in star-forming galaxies. AKARI's unique near-infrared spectroscopic capability has made these detections possible. For two of these galaxies, this represents the first evidence of their redshifts and confirms their physical association with a companion radio galaxy. The star formation rates (SFRs) estimated from the $H{\alpha}$ lines under-predict the SFRs estimated from their far-infrared luminosities by a factor of ~ 2 - 3. We have also detected broad $H{\alpha}$ components in the two radio galaxies which indicate the presence of quasars.

SPATIALLY RESOLVED KINEMATICS OF GAS AND STARS IN HIDDEN TYPE 1 AGNS

  • Son, Donghoon;Woo, Jong-Hak;Eun, Da-In;Cho, Hojin;Karouzos, Marios;Park, Songyeon
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.5
    • /
    • pp.103-115
    • /
    • 2020
  • We analyze the spatially resolved kinematics of gas and stars for a sample of ten hidden type 1 AGNs in order to investigate the nature of their central sources and the scaling relation with host galaxy stellar velocity dispersion. We select our sample from a large number of hidden type 1 AGNs, which are identified based on the presence of a broad (full width at half maximum ≳1000 km s-1) component in the Hα line profile and which are frequently mis-classified as type 2 AGNs because AGN continuum and broad emission lines are weak or obscured in the optical spectral range. We used the Blue Channel Spectrograph at the 6.5-m Multiple Mirror Telescope to obtain long-slit data with a spatial scale of 0.3 arcsec pixel-1. We detected broad Hβ lines for only two targets; however, the presence of strong broad Hα lines indicates that the AGNs we selected are all low-luminosity type 1 AGNs. We measured the velocity, velocity dispersion, and flux of stellar continuum and gas emission lines (i.e., Hβ and [O III]) as a function of distance from the center. The spatially resolved gas kinematics traced by Hβ or [O III] are generally similar to the stellar kinematics except for the inner center, where signatures of gas outflows are detected. We compare the luminosity-weighted effective stellar velocity dispersions with the black hole masses and find that our hidden type 1 AGNs, which have relatively low back hole masses, follow the same scaling relation as reverberation-mapped type 1 AGN and more massive inactive galaxies.

On the Radial Velocity Offset for [OIII] Emission Line of LINER Galaxies

  • Bae, Hyun-Jin;Woo, Jong-Hak;Yagi, Masafumi;Yoon, Suk-Jin;Yoshida, Michitoshi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.33.2-33.2
    • /
    • 2012
  • Low-ionization nuclear emission-line region (LINER) galaxies constitute a major fraction of low-luminosity AGN population in the local Universe. In contrast to Seyfert galaxies, it is theoretically expected that LINERs would not have an outflow due to their low Eddington ratio. Using Keck/LRIS spectroscopy on a nearby LINER galaxy SDSS J091628.05+420818.7, we find a significant radial velocity offset for [OIII]${\lambda}$5007 emission line as - 50 km $s^{-1}$ blueshifted compared to systemic velocity of the galaxy, while other emission lines exhibit no or little offset. The observed [OIII] velocity offset possibly indicates an outflow of gas in the LINER galaxy, and it is probable that we only detected the [OIII] velocity offset because [OIII] ionization region is closer to the accretion disk, hence, more affected by an outflow. We further investigate the [OIII] velocity offset of -4000 SDSS AGN-host galaxies to compare the strength of AGN outflow. We find that a number of both LINER and Seyfert galaxies show [OIII] velocity offset, but the fraction of LINER galaxies with velocity offset is smaller than that of Seyfert galaxies. The preliminary results imply the presence of gas outflow in LINER galaxies, although outflow strength is probably weaker compared to Seyfert galaxies.

  • PDF

FAR-INFRARED [C II] EMISSION FROM THE CENTRAL REGIONS OF SPIRAL GALAXIES

  • MOCHIZUKI KENJI
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.193-197
    • /
    • 2004
  • Anomalies in the far-infrared [C II] 158 ${\mu}m$ line emission observed in the central one-kiloparsec regions of spiral galaxies are reviewed. Low far-infrared intensity ratios of the [C II] line to the continuum were observed in the center of the Milky Way, because the heating ratio of the gas to the dust is reduced by the soft interstellar radiation field due to late-type stars in the Galactic bulge. In contrast, such low line-to-continuum ratios were not obtained in the center of the nearby spiral M31, in spite of its bright bulge. A comparison with numerical simulations showed that a typical column density of the neutral interstellar medium between illuminating sources at $hv {\~} 1 eV $ is $N_H {\le}10^{21}\;cm^{-2}$ in the region; the medium is translucent for photons sufficiently energetic to heat the grains but not sufficiently energetic to heat the gas. This interpretation is consistent with the combination of the extremely high [C Il]/CO J = 1-0 line intensity ratios and the low recent star-forming activity in the region; the neutral interstellar medium is not sufficiently opaque to protect the species even against the moderately intense incident UV radiation. The above results were unexpected from classical views of the [C II] emission, which was generally considered to trace intense interstellar UV radiation enhanced by active star formation.

Improved and quality-assessed emission and absorption line measurements in Sloan Digital Sky Survey galaxies

  • Oh, Kyu-Seok;Sarzi, Marc;Schawinski, Kevin;Yi, Suk-Young K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.73.2-73.2
    • /
    • 2011
  • We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting(pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionised gas emission. Most notable of our work is that, we provide quality of the fit to assess reliability of the measurements. The quality assessment can be highly effective for finding new classes of objects. For example, based on the quality assessment around the Ha and [NII] nebular lines, we found approximately 1% of the SDSS spectra which classified as "galaxies" by the SDSS pipeline are in fact type I Seyfert AGN.

  • PDF

THE 18 ㎛ LUMINOSITY FUNCTION OF GALAXIES WITH AKARI

  • Toba, Yoshiki;Oyabu, Shinki;Matsuhara, Hideo;Ishihara, Daisuke;Malkan, Matt;Wada, Takehiko;Ohyama, Youichi;Kataza, Hirokazu;Takita, Satoshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.335-338
    • /
    • 2012
  • We present the $18{\mu}m$ luminosity function (LF) of galaxies at 0.006 < z < 0.8 (the average redshift is ~ 0.04) using the AKARI mid-infrared All-Sky Survey catalogue. We have selected 243 galaxies at $18{\mu}m$ from the Sloan Digital Sky Survey (SDSS) spectroscopic region. These galaxies then have been classified into five types; Seyfert 1 galaxies (Sy1, including quasars), Seyfert 2 galaxies (Sy2), low ionization narrow emission line galaxies (LINER), galaxies that are likely to contain both star formation and Active Galactic Nuclei (AGN) activities (composites), and star forming galaxies (SF) using optical emission lines such as the line width of $H{\alpha}$ or the emission line ratios of [OIII]/$H{\beta}$ and [NII]/$H{\alpha}$. As a result of constructing the LF of Sy1 and Sy2, we found the following results; (i) the number density ratio of Sy2 to Sy1 is $1.64{\pm}0.37$, larger than the results obtained from optical LF and (ii) the fraction of Sy2 in the entire AGN population may decrease with $18{\mu}m$ luminosity. These results suggest that most of the AGNs in the local universe are obscured by dust and the torus structure probably depends on the mid-infrared luminosity.

AGN BROAD LINE REGIONS SCALE WITH BOLOMETRIC LUMINOSITY

  • TRIPPE, SASCHA
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.203-206
    • /
    • 2015
  • The masses of supermassive black holes in active galactic nuclei (AGN) can be derived spectroscopically via virial mass estimators based on selected broad optical/ultraviolet emission lines. These estimates commonly use the line width as a proxy for the gas speed and the monochromatic continuum luminosity, λLλ, as a proxy for the radius of the broad line region. However, if the size of the broad line region scales with the bolometric AGN luminosity rather than λLλ, mass estimates based on different emission lines will show a systematic discrepancy which is a function of the color of the AGN continuum. This has actually been observed in mass estimates based on Hα/Hβ and CIV lines, indicating that AGN broad line regions indeed scale with bolometric luminosity. Given that this effect seems to have been overlooked as yet, currently used single-epoch mass estimates are likely to be biased.

SPECTRA OF HII REGIONS IN SPIRAL GALAXIES AND GALACTIC GLOBULAR CLUSTERS (나선은하 HII 영역과 우리은하 구상성단의 중$\cdot$저분산 스펙트럼)

  • CHUN MUN-SUK;SOHN YOUNG-JONG
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.1-13
    • /
    • 2000
  • We review the early historical developement of astronomical spectrographs, properties of emission line spectra of HII regions in spiral galaxies, and absorption line features of galactic globular clusters. Emission line spectra of HII regions within three spiral galaxies NGC 300, NGC 1365, and NGC 7793, which were observed from AAT/IPCS, had been analysed, and we discuss the abundances of elements in HII regions and the radial abundace gradients through the galaxies. The radial UBV color variations of two globular clusters, NGC 1851 and NGC 2808, were examined for correlations with radial variations of several absorption lines in the integrated spectra, which were obtained from SAAO 74 inch telescope and image tube spectrograph. Nine giant star's spectra in NGC 3201 were also obtained and analysed for the radial abundance gradients in the globular cluster. The results show that the presence of a radial color gradient in a globular cluster is correlated with the presence of abundance gradients. Finally, we suggest some scientific programs for the new high dispersion spectrograph, which will be installed to the BOAO 1.8m telescope.

  • PDF

BRACKETT LINE-BASED MBH ESTIMATORS AND HOT DUST TEMPERATURES OF TYPE 1 AGNs FROM AKARI SPECTROSCOPIC DATA

  • KIM, DOHYEONG;IM, MYUNGSHIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.443-445
    • /
    • 2015
  • We provide results of near-infrared (NIR) spectroscopic observations of 83 nearby (0.002< z <0.48) and bright (K <14 mag) type 1 active galactic nuclei (AGNs). For the observations, we used the Infrared Camera (IRC) on AKARI allowing us to obtain the spectrum in the rarely studied spectral range of $2.5-5.0{\mu}m$. The $2.5-5.0{\mu}m$ spectral region suffers less dust extinction than ultra violet (UV) or optical wavelength ranges, and contains several important emission lines such as $Br{\beta}$ ($2.63{\mu}m$), $Br{\alpha}$ ($4.05{\mu}m$), and polycyclic aromatic hydrocarbon (PAH; $3.3{\mu}m$). The sample is selected from the bright quasar surveys of Palomar Green and SNUQSO, and AGNs with black hole (BH) masses estimated from reverberation mapping method. We measure the Brackett line properties for 11 AGNs, which enable us to derive BH mass estimators and investigate circum-nuclear environments. Moreover, we perform spectral modeling to fit the hot and warm dust components by adding photometric data from SDSS, 2MASS, WISE, and ISO to the AKARI spectra, and estimate hot and warm dust temperatures of ~1100K and ~220 K, respectively.