• Title/Summary/Keyword: galactosyl lactose

Search Result 6, Processing Time 0.02 seconds

Enzymatic Synthesis and Characterization of Galactosyl Trehalose Trisaccharides

  • Kim, Bong-Gwan;Lee, Kyung-Ju;Han, Nam-Soo;Park, Kwan-Hwa;Lee, Soo-Bok
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.127-132
    • /
    • 2007
  • [ ${\alpha},\;{\alpha}$ ]-Trehalose was efficiently modified by a transgalactosylation reaction of Escherichia coli ${\beta}-galactosidase$ using lactose as a donor to yield two galactosyl trehalose trisaccharides. The reaction products of trehalose by the enzyme were observed by thin layer chromatography (TLC) and high performance anion exchange chromatography (HPAEC) and were purified by BioGel P2 gel permeation chromatography and recycling preparative HPLC. Liquid chromatography-mass spectrometry (LC-MS) and ^{13}C$ nuclear magnetic resonance (NMR) analyses revealed that the structures of the main products were $6^2-{\beta}-D-galactosyl$ trehalose (1) and $4^2-{\beta}-D-galactosyl$ trehalose (2). A reaction of 30%(w/v) trehalose and 15%(w/v) lactose at pH 7.5 and $45^{\circ}C$ resulted in a total yield of approximately 27-30% based on the amount of trehalose used. The galactosyl trehalose products were not hydrolyzed by trehalose. In addition the mixture of transfer products (9:1 ratio of 1 to 2) showed higher thermal stability than glucose, lactose, and maltose, but less than trehalose, against heat treatment over $100^{\circ}C$ at pH 4 and 7. It also exhibited better thermal stability than sucrose at pH 4 alone.

Characteristics of Galactooligosaccharide Production Using Cellulases (셀룰라제를 이용한 갈락코올리고당의 생산 특성)

  • 신현재;양지원
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.317-322
    • /
    • 1996
  • Galactooligosaccharlde (GOS) is a kind of functional oligosaccharides that can be used as a food ingredient and a cosmetic additive. In this paper, characteristics of GOS synthesis by cellulase, using lactose as a substrate, were investigated. Penicillium funiculosum cellulose was found to be the most efficient for GOS production among six cellulose tested. The optimum pH and temperature for GOS production were 5.0 and $50^{\circ}C$, respectively. There was an optimum ratio of lactose concentration to enzyme loading; the value was 10 (w/w). The reaction pattern of P. funiculosum cellulase is consistent with that of microbial ${\beta}$-galactosidase which shows transgalactosylation activity. Amounts of GOS produced from 20% (w/v) lactose after 6 h incubation at $50^{\circ}C$, were 23% (w/w) based on total saccharide in the reaction medium. The GOS % increased with initial lactose concentration in the range of 5 to 20%. The products mainly consisted of a trisaccharide and tetrasaccharide from HPLC and TLC analysis. Among enzymes involved in transgalactosylation reaction, high molecular weight fractions over 50,000 Da, presumably ${\beta}$-glucosldase, were considered to be responsible for GOS production. Using this cellulose, a direct synthesis of galactosyl g1ucoside including GOS could be readily achieved with lactose as a galactosyl donor.

  • PDF

Galactooligosaccharide Synthesis by Active ${\beta}$-Galactosidase Inclusion Bodies-Containing Escherichia coli Cells

  • Lee, Sang-Eun;Seo, Hyeon-Beom;Kim, Hye-Ji;Yeon, Ji-Hyeon;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1151-1158
    • /
    • 2011
  • In this study, a galactooligosaccharide (GOS) was synthesized using active ${\beta}$-galactosidase (${\beta}$-gal) inclusion bodies (IBs)-containing Escherichia coli (E. coli) cells. Analysis by MALDI-TOF (matrix-assisted laser desorption/ionization-time of flight) mass spectrometry revealed that a trisaccharide was the major constituent of the synthesized GOS mixture. Additionally, the optimal pH, lactose concentration, amounts of E. coli ${\beta}$-gal IBs, and temperature for GOS synthesis were 7.5, 500 g/l, 3.2 U/ml, and $37^{\circ}C$, respectively. The total GOS yield from 500 g/l of lactose under these optimal conditions was about 32%, which corresponded to 160.4 g/l of GOS. Western blot analyses revealed that ${\beta}$-gal IBs were gradually destroyed during the reaction. In addition, when both the reaction mixture and E. coli ${\beta}$-gal hydrolysate were analyzed by high-performance thin-layer chromatography (HP-TLC), the trisaccharide was determined to be galactosyl lactose, indicating that a galactose moiety was most likely transferred to a lactose molecule during GOS synthesis. This GOS synthesis system might be useful for the synthesis of galactosylated drugs, which have recently received significant attention owing to the ability of the galactose molecules to improve the drugs solubility while decreasing their toxicity. ${\beta}$-Gal IB utilization is potentially a more convenient and economic approach to enzymatic GOS synthesis, since no enzyme purification steps after the transgalactosylation reaction would be required.

Research Trend of Lactulose Production from Lactose (젖당(Lactose)으로부터 락툴로오스(Lactulose) 생산을 위한 연구 동향)

  • Lee, Ja Hyun;Yoo, Hah Young;Jung, Da Un;Park, Charnho;Song, Yoon Seok;Park, Chulhwan;Kim, Seung Wook
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.407-412
    • /
    • 2014
  • Lactulose is well known for functional component in the food and pharmaceutical field and utilized in a wide variety of foods as a bifidus factor or functional ingredient for intestinal regulation. Lactulose synthesis can be classified into chemical and biological methods. In chemical methods, lactulose is synthesized by alkaline isomerization, but it has many disadvantages such as including product purification, lactulose degradation, side reactions and waste management. Therefore, the enzymatic synthesis methods were recently studied to solve these problems. ${\beta}$-galactosidase is a important enzyme in the dairy industry, because of the production of lactose-hydrolyzed products. Also, ${\beta}$-galactosidases can be utilized to synthesize lactulose from lactose by a trans-galactosylation reaction, using fructose as a galactosyl acceptor. However, the synthesis of lactulose from lactose is economically not suitable due to high levels of lactose price. This review summarizes the current state of lactulose production by chemical and biological processes.

Enzymatic Production of Galactooligosaccharide by Bullera singularis $\beta$-Galactosidase

  • SHIN, HYUN-JAE;JI-WON YANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.484-489
    • /
    • 1998
  • Galactooligosaccharides (GalOS) were efficiently produced by partially purified $\beta$-galactosidase from the yeast strain Bullera singularis ATCC 24193. Ammonium sulfate precipitation and ultrafiltration methods were used to prepare the enzyme. The enzyme activity decreased at $50^{\circ}C$ and above. A maximum yield of 40% (w/w) GalOS, corresponding to 120 g of GalOS per liter, was obtained from 300 g per liter of lactose solution at $45^{\circ}C$, pH 3.7 when the lactose conversion was 70%. The yield of GalOS did not increase with increasing initial lactose concentration but the total amounts of GalOS did. Volumetric productivity was 4.8 g of GalOS per liter per hour. During this reaction, the by-products, glucose and galactose, were found to inhibit GalOS formation. Reaction products were found to be comprised of disaccharides and trisaccharides according to TLC and HPLC analyses. We propose the structure of the major product, a trisaccharide, to be ο-$\beta$-D-galactopyranosyl-(l-4)-ο-$\beta$-D-galactopyranosyl-(l-4)-$\beta$-D-glucose (4'-galactosyl lactose).

  • PDF

The Effect of Glucose and Glucose Transporter on Regulation of Lactation in Dairy Cow

  • Heo, Young-Tae;Park, Joung-Jun;Song, Hyuk
    • Reproductive and Developmental Biology
    • /
    • v.39 no.4
    • /
    • pp.97-104
    • /
    • 2015
  • Glucose is universal and essential fuel of energy metabolism and in the synthesis pathways of all mammalian cells. Glucose is the one of the major precursors of lactose synthesis using glycolysis result in producing milk fat and protein. During the milk fat synthesis, lipoprotein lipase (LPL) and CD36 are required for glucose uptake. Various morecules such as acyl-CoA synthetase 1 (ACSL1) activity of acetyl-CoA synthetase 2 (ACSS2), ACACA, FASN AGPAT6, GPAM, LPIN1 are closely related with milk fat synthesis. Additionally, glucose plays a major role for synthesizing lactose. Activations of lactose synthesize enzymes such as membranebound enzyme, beta-1,4-galactosyl transferase (B4GALT), glucose-6-phosphate dehydrogenase (G6PD) are changed by concentration of glucose in blood resulting change of amount of lactose production. Glucose transporters are a wide group of membrane proteins that facilitate the transport of glucose over a plasma membrane. There are 2 types of glucose transporters which consisted facilitative glucose transporters (GLUT); and sodium-dependent transport, mediated by the Na+/glucose cotransporters (SGLT). Among them, GLUT1, GLUT8, GLUT12, SGLT1, SGLT2 are main glucose transporters which involved in mammary gland development and milk synthesis. However, more studies are required for revealing clear mechanism and function of other unknown genes and transporters. Therefore, understanding of the mechanisms of glucose usage and its regulation in mammary gland is very essential for enhancing the glucose utilization in the mammary gland and improving dairy productivity and efficiency.