• Title/Summary/Keyword: galactose biosensor

Search Result 3, Processing Time 0.02 seconds

Development of electrochemical biosensor for determination of galactose (4갈락토오즈 측정을 위한 전기화학적 바이오센서 개발)

  • Park, Kap Soo;Cho, Soon Sam;Quan, De;Lee, Jae Seon;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.393-399
    • /
    • 2007
  • In principle, the blood galactose level may be determined conveniently with a strip-type biosensor similar to that for glucose. In this study, we describe the development of a disposable galactose biosensor strip for point-of-care testing. The sensor strip is constructed with screen-printed carbon paste electrode (SPCE) and sample amount (< $100{\mu}L$). The developed strip the galactose level in less than 90 s using bienzymatic system of galactose oxidase (GAO) and horseradish peroxidase (HRP). The effects of pH, mediator (1,1-ferrocenedimethanol) concentration, ratio of enzymes, and applied potential were determined preliminarily with glassy carbon electrodes, and optimized further with the strip-type electrodes. The sensor exhibits linear response in the range of $0{\sim}400{\mu}M$ ($r^2$ = 0.997, S/N = 3). Since a low working potential, in principle, the fabricated disposable galactose biosensor has -100 mV (vs. Ag/AgCl), it is applied for the detection of galactose, interfering responses from common interferents such as ascorbic acid, uric acid and acetaminophen could be minimized. The sensor has been used to determine the total galactose level in standard samples with satisfactory reproducibility (CV = 5 %).

Disposable Strip-Type Biosensors for Amperometric Determination of Galactose

  • Gwon, Kihak;Lee, Seonhwa;Nam, Hakhyun;Shin, Jae Ho
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.310-317
    • /
    • 2020
  • A development of disposable strip-type galactose sensor for point-of-care testing (POCT) was studied, which was constructed using screen-printed carbon electrodes. Galactose levels were determined by the redox reaction of galactose oxidase in the presence of potassium ferricyanide as an electron transfer mediator in a small sample volume (i.e., less than 1 µL). The optimal performance of biosensor was systematically designated by varying applied potential, operating pH, mediator concentration, and amount of enzyme on the electrode. The sensor system was identified as a highly active for the galactose measurement in terms of the sensitivity (slope = 4.76 ± 0.05 nA/µM) with high sensor-to-sensor reproducibility, the linearity (R2 = 0.9915 in galactose concentration range from 0 to 400 µM), and response time (t95% = <17 s). A lower applied potential (i.e., 0.25 V vs. Ag/AgCl) allowed to minimize interference from readily oxidizable metabolites such as ascorbic acid, acetaminophen, uric acid, and acetoacetic acid. The proposed galactose sensor represents a promising system with advantage for use in POCT.