• Title/Summary/Keyword: galactic center

Search Result 220, Processing Time 0.026 seconds

A study of sub-galactic scale structure formation with a cosmological hydro code

  • Shin, Ji-Hye;Kim, Ju-Han;Kim, Sung-Soo S.;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • To study the formation and evolution of sub-galactic scale structures, we have added SPH (Smoothed Particle Hydrodynamics) method into an existing cosmological PMTree code, GOTPM. To follow the evolution of gas particles, we consider heating/cooling processes, star formation, and energy & metal feedback by supernova explosion. We have performed various tests for the new code and found that the results reproduce observed quantities or follow the known analytic solutions. We present a test simulation of isolated disk galaxy with a focus on whether the star formation reproduces the observed features.

  • PDF

Pixel Intensity Histogram Method for Unresolved Stars: Case of the Arches Cluster

  • Shin, Jihye;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.58.2-58.2
    • /
    • 2014
  • The Arches cluster is a young (2-4 Myr), compact (~1 pc), and massive (${\sim}2{\times}10^4M_{\odot}$) star cluster located ~30 pc away from the Galactic center (GC) in projection. Being exposed to the extreme environment of the GC such as elevated temperature and turbulent velocities in the molecular clouds, strong magnetic fields, and larger tidal forces, the Arches cluster is an excellent target for understanding the effects of star-forming environment on the initial mass function (IMF) of the star cluster. However, resolving stars fainter than ~1 $M_{\odot}$ in the Arches cluster partially will have to wait until an extremely large telescope with adaptive optics in the infrared is available. Here we devise a new method to estimate the shape of the low-end mass function where the individual stars are not resolved, and apply it to the Arches cluster. This method involves histograms of pixel intensities in the observed images. We find that the initial mass function of the Arches cluster should not be too different from that for the Galactic disk such as the Kroupa IMF.

  • PDF

PHOTOMETRIC STUDY OF IC 2156

  • TADROSS, A.L.;HENDY, Y.H.M.
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.2
    • /
    • pp.53-57
    • /
    • 2016
  • We present an optical UBVRI photometric analysis of the poorly studied open star cluster IC 2156 using Sloan Digital Sky Survey data in order to estimate its astrophysical properties. We compare these with results from our previous studies that relied on the 2MASS JHK near-infrared photometry. The stellar density distributions and color-magnitude diagrams of the cluster are used to determine its geometrical structure, real radius, core and tidal radii, and its distance from the Sun, the Galactic plane, and the Galactic center. We also estimate, the age, color excesses, reddening-free distance modulus, membership, total mass, luminosity function, mass function, and relaxation time of the cluster.

Effect of Radiation Pressure Formed at the Inner Region of the Accretion Disk on the Accretion Flow in the Outer Region

  • Hongsu Kim;Uicheol Jang
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.247-258
    • /
    • 2023
  • Studying the accretion phenomena provides a window into understanding most heavenly bodies, from the birth of stars to active galactic nuclei (AGN). We would adopt the effect of the radiation pressure, which reduces accretion rates (Ṁ), on the accretion phenomena. The Shakura-Sunyaev α-disk model of disk accretion is a good candidate theory of advection dominated accretion flow (ADAF). Reduction in the angular velocity leads to the suppression the disk luminosity and surface temperature, essentially indicating the transition of the standard accretion disk model from convection dominated accretion flow (CDAF) to ADAF.

THE CENTRAL REGION OF THE BARRED SPIRAL GALAXY NGC 1097 PROBED BY AKARI NEAR-INFRARED SPECTROSCOPY

  • Kondo, T.;Kaneda, H.;Oyabu, S.;Ishihara, D.;Mori, T.;Yamagishi, M.;Onaka, T.;Sakon, I.;Suzuki, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.257-258
    • /
    • 2012
  • With AKARI, we carried out near-infrared spectroscopy of the nearby barred spiral galaxy, NGC 1097, categorized as Seyfert 1 with a circumnuclear starburst ring. Our observations mapped the galactic center region. As a result, we obtain the spatial distributions of the polycyclic aromatic hydrocarbon $3.3{\mu}m$ and the aliphatic hydrocarbon $3.4-3.6{\mu}m$ emission. The former is detected from all the observed regions and the latter is enhanced near the bar connecting the ring with the nucleus. In addition, we detect absorption features due to $H_2O$ ice and CO/SiO at the ring and the galactic center, while we detect the hydrogen recombination line $Br{\alpha}$ only from the ring. Hence the observed spectra change dramatically within the central 1 kpc region.

A STUDY OF THE GALACTIC CENTER REGIONS USING THE IMPROVED DATA OF THE MID-INFRARED ALL-SKY SURVEY

  • Mouri, A.;Kaneda, H.;Ishihara, D.;Oyabu, S.;Kondo, T.;Suzuki, S.;Yasuda, A.;Onaka, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.217-218
    • /
    • 2012
  • Among the AKARI all-sky survey data, the $9{\mu}m$ diffuse map is crucial to study the polycyclic aromatic hydrocarbon (PAH) emission features on large spatial scales, while the $18{\mu}m$ map is useful to trace hot dust emission. To utilize these advantages, we have improved the AKARI mid-infrared (MIR) all-sky survey diffuse maps. For example, we have established special methods to remove the effects of the ionizing radiation in the South Atlantic Anomaly (SAA) and of the scattered light from the moon. Using improved diffuse map data, we study the properties of PAHs and dust in the Galactic center region associated with high-energy phenomena.

Secular Evolution of Nuclear Bulges through Sustained Star Formation

  • Kim, Sung-Soo S.;Saitoh, Takayuki;Jeon, Myoung-Won;Merritt, David;Figer, Donal F.;Wada, Keiich
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.72.1-72.1
    • /
    • 2010
  • Gas materials in the inner Galactic disk continuously migrate toward the Galactic center (GC) due to interactions with the bar potential, magnetic fields, stars, and other gaseous materials. In case of the Milky Way, those in forms of molecules appear to accumulate around 200 pc from the center (the central molecular zone, CMZ) to form stars there and further inside. The bar potential in the GC is thought to be responsible for such acculmulation of molecules and subsequent star formation, which is believed to have been continous throughout the lifetime of the Galaxy. We present 3-D hydrodynamic simulations of the CMZ that consider self-gravity, radiative cooling, and supernova feedback, and discuss the efficiency and role of the star formation in that region. We find that the gas accumulated in the CMZ by a bar potential of the inner bulge effectively turns into stars, supporting the idea that the stellar cusp inside the central 200 pc is a result of the sustained star formation in the CMZ. The obtained star formation rate in the CMZ, 0.03-0.1 Msun, is consistent with the recent estimate based on the mid-infrared observations by Yusef-Zadeh et al. We discuss the secular evolution of nuclear bulges in general, based on our results.

  • PDF

A SEARCH FOR MOLECULAR CLOUDS AT HIGH GALACTIC LATITUDE

  • Chi Seung-Youp;Park Yong-Sun
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.19-24
    • /
    • 2006
  • We carried out CO survey toward IR-excess clouds using SRAO 6-m telescope in search of molecular $H_2$. These clouds, which show far-infrared excess over what is expected from HI column density, are considered to be candidates of molecular clouds. In order to find new high Galactic latitude clouds, we made mapping observations for 14 IR-excess clouds selected from Reach et al.(1998) in $^{12}CO$ J = 1 - 0 line, supplementing the similar survey in southern hemisphere (Onishi et al. 2001). $^{12}CO$ emission is detected from three IR-excess clouds among 14 objects. Three newly detected clouds exhibit somewhat clumpy morphology and column densities amount to ${\sim}10^{21}\;cm^{-2}$. One of three clouds, DIR120-28, show discrepancy between IR-excess center and CO emission center. It seems that IR-excess may not be an effective tracer of molecular gas. Instead, optical depth$(\tau)$ excess, i.e., IR-excess corrected for temperature dependence, may be more effective tracer of molecular clouds, since, by combining statistics from both hemispheres, we found that the detection rate is higher for IR-excess clouds with lower dust temperature.

Fundamental parameters of the eclipsing binaries in the Large Magellanic cloud

  • Hong, Kyeong Soo;Kang, Young Woon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.141.2-141.2
    • /
    • 2012
  • We present photometric solutions of the 26,212 eclipsing binaries discovered in the LMC by Graczyk et al. (2011). They published that 70 percent of a total are detached systems. Another 25 and 5 percent are semi-detached and contact binaries, respectively. We discovered that 21 percent of 26,121 eclipsing binary stars are eccentric orbit systems. The binary star distribution in the LMC is different from those of the Galactic center direction (Bade window). It is very interesting that there are only 5 of 357 (2 percent) stars have eccentric orbit in the Galactic Center (Kang 2011). We selected the light curve of 18,274 detached systems. Then we estimated the fundamental parameters on the basis of their photometric solutions and the semi-major-axis (a) assuming the distance modulus to the LMC~18.50. We compared the estimated fundamental parameters with an empirical mass-luminosity relation and consistency between mass-radius relation base on stellar evolution model in the low metallicity (Z=0.008) by Bertelli et al. (2009). This method allows for independent determine of the fundamental parameters of the eclipsing binaries in the LMC without the radial velocity curves.

  • PDF

OBSERVATIONS OF $C_3H_2 (2_{12}-1_{01})$ TOWARD THE SAGITTARIUS A MOLECULAR CLOUD

  • LEE C. W.;MINH Y. C.;IRVINE W. M.
    • Journal of The Korean Astronomical Society
    • /
    • v.26 no.1
    • /
    • pp.73-78
    • /
    • 1993
  • We have mapped the $C_3H_2\;2_{12}-1_{01}$ transition line toward the Sgr A molecular cloud on a 1' grid spacing and derived $C_3H_2$ column densities of $3\~7\times10^{14}\;cm^{-2}$ for molecular clouds of Sgr A. The fractional abundances of $C_3H_2$ relative to $H_2$ are obtained to be $3\~6\times10^{-9}$, which are slightly lower than that for the cold dark cloud TMC-1 but are enhanced by factors of 5-60 compared to those for Sgr B2 and the Orion extended ridge. We also estimate from the $C_3H_2$ column densities total masses of $\~10^6\; M_\bigodot$ for two clouds (M - 0.13 - 0.08 and M - 0.02 - 0.07), which are thought to be close to the virial equilibrium. We suggest that the large abundance of $C_3H_2$ in Sgr A may be partly due to the activities of the Galactic center.

  • PDF