• Title/Summary/Keyword: gait study

Search Result 1,795, Processing Time 0.029 seconds

The Effects of Gait Ability in the Stroke Patients after Stair Gait Exercise and Lamp Gait Exercise (계단보행훈련과 경사로보행훈련이 뇌졸중 환자의 보행능력에 미치는 영향)

  • Seo, Kyo-Chul;Kim, Hyeun-Ae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.3
    • /
    • pp.397-406
    • /
    • 2013
  • PURPOSE: The Purpose of this study was on determine whether stair gait exercise and lamp gait exercise might increase the gait ability of the patients with stroke METHODS: Fourty five patients with stroke were randomly assigned to plane gait exercise group(n=15) and ramp gait exercise group(n=15) and stair gait exercise group(n=15). During four weeks, each group participated thirty minutes for five times per week. Subjects were assessed using pre-value and post-value measurement gait ability(Step length, Heel to heel base of support, Step time, Double support ratio, Gait velocity). RESULTS: These finding suggest that stair gait exercise group was significant in Step length, Heel to heel base of support, Step time, Double support ratio, Gait velocity(p<.05). And lamp gait exercise group was only significant increase in Step time, Gait velocity(p<.05). In comparison of three group, stair gait exercise group was high gait ability than other two groups(p>.05). CONCLUSION: This study showed stair gait exercise group can be used to improve gait ability than other two groups. Thus it indicates that the stair gait exercise group will be more improved through the continued gait program.

Changes of Gait Variability by the Attention Demanding Task in Elderly Adults

  • Yeo, Sang Seok
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.6
    • /
    • pp.303-306
    • /
    • 2017
  • Purpose: Gait variability is defined as the intrinsic fluctuations which occur during continuous gait cycles. Increased gait variability is closely associated with increased fall risk in older adults. This study investigated the influence of attention-demanding tasks on gait variability in elderly healthy adults. Methods: We recruited 15 healthy elderly adults in this study. All participants performed two cognitive tasks: a subtraction dual-task (SDT) and working memory dual-task (WMDT) during gait plus one normal gait. Using the $LEGSys^+$ system, we measured the coefficient of variation (CV %=$100{\times}$[standard deviation/mean]) for participants' stride time, stride length, and stride velocity. Results: SDT gait showed significant increment of stride time variability compared with usual gait (p<0.05), however, stride length and velocity variability did not difference between SDT gait and usual gait (p>0.05). WMDT gait showed significant increment of stride time and velocity variability compared with usual gait (p<0.05). In addition, stride time variability during WMDT gait also significantly increased compared with SDT gait (p<0.05). Conclusion: We reported that SDT and WMDT gait can induce the increment of the gait variability in elderly adults. We assume that attention demanding task based on working memory has the most influence on the interference between cognitive and gait function. Understanding the changes during dual task gait in older ages would be helpful for physical intervention strategies and improved risk assessment.

The test-retest reliability of gait kinematic data measured using a portable gait analysis system in healthy adults

  • An, Jung-Ae;Byun, Kyung-Seok;Lee, Byounghee
    • Journal of Korean Physical Therapy Science
    • /
    • v.27 no.3
    • /
    • pp.25-34
    • /
    • 2020
  • Background: Gait analysis is an important measurement for health professionals to assess gait patterns related to functional limitations due to neurological or orthopedic conditions. The purpose of this study was to investigate the reliability of the newly developed portable gait analysis system (PGAS). Design: Cross-sectional design. Test-retest study. Methods: The PGAS study was based on a wearable sensor, and measurement of gait kinematic parameters, such as gait velocity, cadence, step length and stride length, and joint angle (hip, knee, and ankle) in stance and swing phases. The results were compared with a motion capture system (MCS). Twenty healthy individuals were applied to the MCS and PGAS simultaneously during gait performance. Results: The test-retest reliability of the PGAS showed good repeatability in gait parameters with mean intra-class correlation coefficients (ICCs) ranging from 0.840 to 0.992, and joint angles in stance and swing phase from 0.907 to 0.988. The acceptable test-retest ICC was observed for the gait parameters (0.809 to 0.961), and joint angles (0.800 to 0.977). Conclusion: The results of this study indicated that the developed PGAS showed good grades of repeatability for gait kinematic data along with acceptable ICCs compared with the results from the MCS. The gait kinematic parameters in healthy subjects can be used as standard values for adopting this PGAS.

Effects of Removable Ankle-Foot Orthosis in Chronic Patients With Hemiplegia During Gait Training: A Pilot Study

  • Kim, Hyung-geun;Oh, Yong-seop
    • Physical Therapy Korea
    • /
    • v.22 no.3
    • /
    • pp.91-97
    • /
    • 2015
  • This study was conducted to investigate the effects of the removable ankle-foot orthosis (RAFO) which was developed to improve the gait of stroke patients. The subjects of this study were five stroke patients who agreed to participate in this study by signing a written consent form. To verify gait improvement after wearing the orthosis, a Timed Up and Go test and Functional Gait Assessment were performed, and spatiotemporal gait variables such as gait speed, cadence, stride length, double limb support, and the efficient gait test of body sway angle were performed. For every variable, the differences prior to and after wearing the RAFO were compared using the Wilcoxon signed-rank test. Every gait variable improved significantly after wearing the RAFO compared to prior to wearing it. The pilot study will enhance future efforts to evaluate orthotic function objectively during gait in stroke patients.

The Effects of Robot Assisted Gait Training on Kinematic Factors of the Stroke Patients (로봇보조 보행훈련이 뇌졸중 환자의 운동학적 요인에 미치는 효과)

  • Kim, Sung-Chul;Kim, Mi-Kyong;Yang, Dae-Jung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.1
    • /
    • pp.91-99
    • /
    • 2022
  • Purpose : The goal of this study is to examine the effect of robot assisted gait training (RAGT) on the kinematic factors (temporospatial gait parameters, gait cycle ratio, and gait line length) of gait in stroke patients. Methods : The subjects of this study were 24 stroke patients selected by inclusion criteria. Participants were randomly allocated to two groups: robot assisted gait training (n=11) and general neurological physical therapy group (n=11). In the robot-assisted gait training group, robot-assisted gait training was mediated for 30 minutes a day in addition to general neurological physical therapy. The general neurological physical therapy group was mediated by general neurological physical therapy for 30 minutes a day in addition to general neurological physical therapy. The number of interventions was 5 times a week for 5 weeks. In order to compare the kinematic factors of walking between the two groups, gait analysis was performed before and after 5 weeks of training using the Zebris gait analysis system. Results : As a result of the gait analysis of the two groups, there were significant differences in temporospatial gait variables (step length, stride length, step width, step time, stride time), gait cycle ratio (swing phase, stance phase) and gait line length. However, there was no significant difference in the cadence (temporospatial gait parameters) in the robot assisted gait training group compared to general neurological physical therapy group. Conclusion : It is considered to be a useful treatment for stroke patients to promote the recovery of gait function in stroke patients. Based on the results of this study, continuous robot assisted gait training treatment is considered to have a positive effect on gait ability, the goal of stroke rehabilitation. In the future, additional studies should be conducted on many subjects of stroke patients, the kinematic factors of the legs according to the severity of stroke and treatment period, and the effect of gait training.

The Effects of Insoles for Postural Correction on Spatial-temporal Changes of Gait in Spastic Cerebral Palsy Children

  • Kim, Hee Tak;Lim, Sang Wan
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.6 no.2
    • /
    • pp.840-845
    • /
    • 2015
  • Improvement in functional gait is one of treatment goals in treatment of cerebral palsy children. This study intended to examine the effects of insoles for postural correction on gait in spastic cerebral palsy patients by investigating changes in gait temporal spatial parameters. As the subjects, 15 spastic bilateral cerebral palsy patients participated in this study. Temporal spatial parameters of gait were measured using GAITRite system under three gait conditions. Bare foot gait, gait in shoes, and gait in insoles for postural correction were conducted. In order to look at differences in temporal spatial parameters according to three gait conditions, repeated one way analysis of variance was conducted. As post hoc test, Bonferroni was conducted. A significant level was set at ${\alpha}=.05$. According to the result of this study, gait velocity, cadence, step length, stride length of the left lower extremity significantly changed. When the subjects put on customized insoles for postural correction, the effect was greatest. There were no significant changes in stance time, single support time, double support time, swing % of gait, and stance % of cycle. Therefore, gait with insoles for postural correction positively influenced functional gait improvement and will be able to be usefully employed for spastic cerebral palsy children as one of gait assistance devices.

Short-Term Clinical Effects of Robot-Assisted Gait Training Applied to Patients Undergoing Lower Extremity Surgery: A Pilot Study (하지 수술환자에게 적용한 로봇보조 보행훈련의 단기간 임상적 효과: 예비 연구)

  • Lee, Ha-Min;Kwon, Jung-Won
    • PNF and Movement
    • /
    • v.20 no.2
    • /
    • pp.295-306
    • /
    • 2022
  • Purpose: This study aimed to investigate the effect of robot-assisted gait training on the active ranges of motion, gait abilities, and biomechanical characteristics of gait in patients who underwent lower extremity surgery, and to verify the effectiveness and clinical usefulness of robot-assisted gait training. Methods: This study was conducted on 14 subjects who underwent lower extremity surgery. The subjects participated in robot-assisted gait training for 2 weeks. The active ranges of motion of the lower extremities were evaluated, and gait abilities were assessed using 10-m and 2-min walk tests. An STT Systems Inertial Measurement Unit was used to collect data on biomechanical characteristics during gait. Spatiotemporal parameters were used to measure cadence, step length, and velocity, and kinematic parameters were used to measure hip and knee joint movement during gait. Results: Significant improvements in the active ranges of motion of the hip and knee joints (flexion, extension, abduction, and adduction) and in the 10-m and 2-min walk test results were observed after robot-assisted gait training (p < 0.05). In addition, biomechanical characteristics of gait, spatiotemporal factors (cadence, step length, and velocity), and kinematic factors (gait hip flexion-extension, internal rotation-external rotation angle, and knee joint flexion-extension) were also significantly improved (p < 0.05). Conclusion: The results of this study are of clinical importance as they demonstrate that robot-assisted gait training can be used as an effective intervention method for patients who have undergone lower extremity surgery. Furthermore, the findings of this study are clinically meaningful as they expand the scope of robot-assisted gait training, which is currently mainly applied to patients with central nervous system conditions.

A study on Dynamic Gait Quadruped Walking Robot (사각 보행 로봇의 동적 걸음새에 관한 연구)

  • 김진섭;오준호;조진철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.78-81
    • /
    • 1997
  • In this study, we prepose the dynamic gait in consideration of emerge efficiency. The proposed dynamic gait is applied to the quadruped walking robot and experiments are performed for real robot. We proposed the dynamic gait is diagonal gait which is modified the trot gait in consideration of energy efficiency. The proposed gait is composed of two steps. In one step, the robot walks in the trot gait. In the other step, the robot walks with making the center of gravity lie on the two legs supporting line. Realization of the diagonal intermittent trot gait is performed by open loop contal and motion planning of the proposed gait. The validity of the purposed gait is confirmed by our experiment.

  • PDF

Preliminary Study of Ambulation Training on Electromechanical Gait Trainer in Stroke Patients (전동식 보행 훈련기를 이용한 뇌졸중 환자 보행훈련의 사전연구)

  • Kim, Jae-Hyun;An, Seung-Huon;Bae, Sung-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Purpose : The purpose of this study was to investigate the effect of electromechanical gait trainer therapy in stroke patients. The gait trainer was designed to provide nonambulatory subjects the repetitive practice of a gait-like movement without overstraining therapist. To simulate normal gait, discrete stance and swing phase, lasting 60% and 40% of the gait cycle respectively, and the control of the movement of the centre of mass were required. Methods : This preliminary study investigated during 8 weeks therapy on the gait trainer could improve gait ability in 5 subacute and chronic hemiparetic stroke patients. Gait ability(time up & go [TUG], comfortable and maximal gait speed and functional ambulation category[FAC]), functional movement of lower extremity(Fugl-Meyer Assessment [FMA] and composite spasticity score [CSS]) and sensory of lower extremity(Fugl-Meyer Assessment sensory [FMA-s])were the measured. Results : TUG, comfortable and maximal gait speed and FMA were improved significantly. Although FAC, FMA-s and CSS were improved, there were not statistically significant. Conclusion : Therefore, the gait trainer enabled affected patients the repetitive practice of a gait-like movement, which is important for the restoration of walking ability.

  • PDF

Effects of Treadmill Gait Training Combined with Muscle Tone Control Technique on Gait Ability in Patient with Chronic Stroke (근긴장도 조절기법을 병행한 트레드밀 보행훈련이 만성 뇌졸중 환자의 보행능력에 미치는 영향)

  • Dong-Hoon Kim;Kyung-Hun Kim
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.3
    • /
    • pp.147-157
    • /
    • 2023
  • Purpose : Stroke patients exhibit considerable variations in gait patterns. Stroke patients generally show abnormal muscle tone and gait. This study was performed to evaluate the effects of treadmill gait training combined with muscle tone control technique (TM) on gait ability in patient with chronic stroke. Methods : A single-blind, randomized controlled trial was conducted with 36 patient with chronic stroke. They were randomly allocated 2 groups; treadmill gait training combined with muscle tone control technique group (TM group; n=18) and conservative treatment group (CG group; n=18). The TM group received 15 minutes muscle tone control technique and 15 minute treadmill gait training. In the conservative treatment group received 30 minutes conservative physical therapy. Each group performed 30 minutes a day 3 times a week for 8 weeks. The primary outcome gait ability were measured by gait measurement system (Optogait, Microgate, Italy) and 10 m walking test (10MWT). An independent t-test was used to statistically analyze the pre-test and pos-ttest gait ability results. Results : Both groups demonstrated significant improvement of outcome in gait ability during intervention period. TM group showed significant differences in gait ability as compared to the CG groups (p<.05). TM group showed significant differences in 10MWT as compared to the CG groups (p<.05). Our results showed that TM was more effective on gait ability in patients with chronic stroke. Conclusion : Our findings of this study confirmed that the treadmill gait training combined with muscle tone control technique provided significant improvements on gait ability in patient with chronic stroke. Therefore treadmill gait training combined with muscle tone control technique may positive influenced gait ability. This study will be able to be used as an intervention data for recovering gait ability in patients with chronic stroke.