• 제목/요약/키워드: g-code

검색결과 861건 처리시간 0.023초

경수로 사용후핵연료 건식 중간저장시설의 격납건물 크기에 따른 건물 벽면에서의 방사선량률 추이 예비 분석 (Preliminary Analysis of Dose Rate Variation on the Containment Building Wall of Dry Interim Storage Facilities for PWR Spent Nuclear Fuel)

  • 서명환;윤정현;차길용
    • Journal of Radiation Protection and Research
    • /
    • 제38권4호
    • /
    • pp.189-193
    • /
    • 2013
  • 경수로 사용후핵연료 건식 중간저장시설 격납건물 크기에 따른 방사선량률 추이 분석을 위하여 격납건물 외부 벽면에서의 추정연간선량을 계산하였다. ORIGEN-ARP를 사용하여 농축도 4.5 wt%, 연소도 45,000 MWd/MTU 냉각기간 10년인 사용후핵연료를 대상으로 선원항을 생산하였으며, MCNP 코드를 사용하여 저장시설 및 격납건물에 대한 모델링 및 선량률 계산을 수행하였다. 연간선량은 격납건물 외부 벽면에서의 값으로 계산하였으며, 격납건물 벽과 최외곽 배열의 저장용기와의 간격을 50 m 이상으로 설정할 경우 10CFR72에서 제시하는 연간선량인 0.25 mSv 이하의 값이 계산되었다.

CFD에 의한 1MW 수평축 풍력발전용 로터 설계 및 해석에 관한 연구 (A Study on the 1MW Horizontal Axis Wind Turbine Rotor Design and 3D Numerical Analysis by CFD)

  • 김범석;김유택;남청도;김진구;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.396-401
    • /
    • 2004
  • In this paper, a 1MW HAWT(FIL-1000) rotor blade has been designed by BEMT(Blade Element Momentum Theory) with Prandtl's tip loss. Also, a 3-D flow and performance analysis on the FIL-1000 rotor blade has been carried out by using the 3-D Navier-Stokes commercial solver (CFX-5.7) to provide more efficient design techniques to the large-scale HAWT engineers. The rated power and itsapproaching wind velocity at design point (TSR=7.5) are 1MW and 9.99m/s respectively. The rotor diameter is 54.5m and the rotating speed is 26.28rpm. Airfoils such as FFA W-301, DU91-W-250, DU93-W-210, NACA 63418, NACA 63415 consist of the rotor blade from hub to tip. Recent CFX version, 5.7 was adopted to simulate 3-D flow field and to analyze the performance characteristics of the rotor blade. Entire mesh node number is about 730,000 and it is generated by ICEM-CFD to achieve better mesh quality The predicted maximum power occurringat the design tip speed ratio is 931.45kW. Approaching to the root, the inflow angle becomes large, which causesthe blade to be stalled in the region. Therefore, k-$\omega$ SST turbulence model was used to predict the quantitative flow information more accurately. Application of commercial CFD code to optimum blade design and performance analysis was proved to be more effective environment to HAWT blade designers.

  • PDF

IDENTIFICATION OF TWO-DIMENSIONAL VOID PROFILE IN A LARGE SLAB GEOMETRY USING AN IMPEDANCE MEASUREMENT METHOD

  • Euh, D.J.;Kim, S.;Kim, B.D.;Park, W.M.;Kim, K.D.;Bae, J.H.;Lee, J.Y.;Yun, B.J.
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.613-624
    • /
    • 2013
  • Multi-dimensional two-phase phenomena occur in many industrial applications, particularly in a nuclear reactor during steady operation or a transient period. Appropriate modeling of complicated behavior induced by a multi-dimensional flow is important for the reactor safety analysis results. SPACE, a safety analysis code for thermal hydraulic systems which is currently being developed, was designed to have the capacity of multi-dimensional two-phase thermo-dynamic phenomena induced in the various phases of a nuclear system. To validate the performance of SPACE, a two-dimensional two-phase flow test was performed with slab geometry of the test section having a scale of $1.43m{\times}1.43m{\times}0.11m$. The test section has three inlet and three outlet nozzles on the bottom and top gap walls, respectively, and two outlet nozzles installed directly on the surface of the slab. Various kinds of two-dimensional air/water flows were simulated by selecting combinations of the inlet and outlet nozzles. In this study, two-dimensional two-phase void fraction profiles were quantified by measuring the local gap impedance at 225 points. The flow conditions cover various flow regimes by controlling the flow rate at the inlet boundary. For each selected inlet and outlet nozzle combination, the water flow rate ranged from 2 to 20 kg/s, and the air flow rate ranged from 2.0 to 20 g/s, which corresponds to 0.4 to 4 m/s and 0.2 to 2.3 m/s of the superficial liquid and gas velocities based on the inlet port area, respectively.

소구경 시추공에서의 중성자검층 수치모델링 연구 (A study on slim-hole neutron logging based on numerical simulation)

  • 구본진;남명진
    • 지구물리와물리탐사
    • /
    • 제15권4호
    • /
    • pp.219-226
    • /
    • 2012
  • 이 연구에서는 국내에서 연구가 미약했었던 중성자검층 수치모델링을 이용하여 다양한 시추공 환경에서의 검출기 반응을 분석하였다. 이를 위해 중성자검층 환경을 MCNP 알고리듬으로 구현하여 시뮬레이션을 수행하였다. MCNP 알고리듬은 방사선 수송 시뮬레이션이 및 3차원 기하구조 표현이 가능하여 다양한 분야에서 전세계적으로 많이 이용되고 있다. 먼저 시뮬레이션 결과를 검증하기 위해, 기존 연구의 검출기반응 결과 그래프를 이용하여 비교 분석하였다. 중성자 검층 반응 분석이 가능한 중성자 검층기의 일반적인 특징에 기초하여 수학적으로 중성자검층기 모형을 구성하여 반응을 계산하였다. 먼저, 석회암, 사암, 돌로마이트 등과 같은 매질에서 공극률을 다양하게 변화시켜 가며 수치 계산함으로써, 이 연구에서 고려하고 있는 중성자검층기의 교정곡선(calibration chart)을 도출하였다. 이에 기초하여, 실제 중성자검층 시 고려해야 할 공내수 유무에 의한 반응 변화, 염수가 중성자검층에 미치는 영향 등을 분석함으로써 시추공 환경 변화에 따라 보다 정확하게 공극률을 해석할 수 있는 기틀을 마련하고자 한다.

COARSE MESH FINITE DIFFERENCE ACCELERATION OF DISCRETE ORDINATE NEUTRON TRANSPORT CALCULATION EMPLOYING DISCONTINUOUS FINITE ELEMENT METHOD

  • Lee, Dong Wook;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.783-796
    • /
    • 2014
  • The coarse mesh finite difference (CMFD) method is applied to the discontinuous finite element method based discrete ordinate calculation for source convergence acceleration. The three-dimensional (3-D) DFEM-Sn code FEDONA is developed for general geometry applications as a framework for the CMFD implementation. Detailed methods for applying the CMFD acceleration are established, such as the method to acquire the coarse mesh flux and current by combining unstructured tetrahedron elements to rectangular coarse mesh geometry, and the alternating calculation method to exchange the updated flux information between the CMFD and DFEM-Sn. The partial current based CMFD (p-CMFD) is also implemented for comparison of the acceleration performance. The modified p-CMFD method is proposed to correct the weakness of the original p-CMFD formulation. The performance of CMFD acceleration is examined first for simple two-dimensional multigroup problems to investigate the effect of the problem and coarse mesh sizes. It is shown that smaller coarse meshes are more effective in the CMFD acceleration and the modified p-CMFD has similar effectiveness as the standard CMFD. The effectiveness of CMFD acceleration is then assessed for three-dimensional benchmark problems such as the IAEA (International Atomic Energy Agency) and C5G7MOX problems. It is demonstrated that a sufficiently converged solution is obtained within 7 outer iterations which would require 175 iterations with the normal DFEM-Sn calculations for the IAEA problem. It is claimed that the CMFD accelerated DFEM-Sn method can be effectively used in the practical eigenvalue calculations involving general geometries.

PHC 매입말뚝의 하중저항 설계정수 제안 (Suggestion of Load and Resistance Factored Design Value for PHC Bored Pile)

  • 박종배;박용부;이범식;김상연
    • 토지주택연구
    • /
    • 제3권3호
    • /
    • pp.279-286
    • /
    • 2012
  • 뢰성에 기반한 한계상태설계법은 국제표준화기구인 ISO뿐만 아니라 국내의 각종 건설관련 기준에서도 적용되는 등 국내외적으로 기존 허용응력설계법을 대체하고 있는 실정이다. 본 논문에서는 국내에서 건축물의 기초로 많이 사용되고 있는 PHC 매입말뚝을 대상으로 한계상태설계법의 일종인 LRFD 설계정수를 제안하였다. PHC 매입말뚝의 LRFD 설계정수를 제안하기 위해 81개의 현장 동재하 시험자료와 이들 말뚝에 대한 지지력 설계(Meyerhof 설계법, SPT-CPT 전환 설계법) 자료를 분석하고 목표 신뢰도 지수 2.33과 3.0에 대해 하중저항계수를 제시하였다. PHC 매입말뚝의 저항계수는 목표 신뢰도 지수에 따라 Meyerhof 방법, SPT-CPT 전환법은 각각 0.36~0.44, 0.24~0.31을 나타내었다.

A COMPARISON STUDY OF SPACE RADIATION DOSE ANALYSIS PROGRAMS: SPENVIS SECTORING TOOL AND SIGMA II

  • Chae Jongwon
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.347-350
    • /
    • 2004
  • A space radiation analysis has been used to evaluate an ability of electronic equipment boxes or spacecrafts to endure various radiation effects, so it helps design thicknesses of structure and allocate components to meet the radiation requirements. A comparison study of space radiation dose analysis programs SPENVIS Sectoring Tool (SST) and SIGMA II is conducted through some structure cases, simple sphere shell, box and representative satellite configurations. The results and a discussion of comparison will be given. A general comparison will be shown for understanding those programs. The both programs use the same strategy, solid angle sectoring with ray-tracing method to produce an approximate dose at points in representative simple and complex models of spacecraft structures. Also the particle environment data corresponding to mission specification and radiation transport data are used as input data. But there are distinctions between them. The specification of geometry model and its input scheme, the assignment of dose point and the numbers, the prerequisite programs and ways of representing results will be discussed. SST is a web-based interactive program for sectoring analysis of complex geometries. It may be useful for a preliminary dose assessment with user-friendly interfaces and a package approach. SIGMA II is able to obtain from RSICC (Radiation Safety Information Computational Center) as a FOR-TRAN 77 source code. It may be suitable for either parametric preliminary design or detailed final design, e.g. a manned flight or radiation-sensitive component configuration design. It needs some debugs, recompiling and a tedious work to make geometrical quadric surfaces for actual spacecraft configuration, and has poor documentation. It is recommend to vist RSICC homepage and GEANT4/SSAT homepage.

  • PDF

국내 지진재해도를 고려한 저층 필로티 건물의 붕괴 확률 (Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard)

  • 김대환;김태완;추유림
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.485-494
    • /
    • 2016
  • The risk-based assessment, also called time-based assessment of structure is usually performed to provide seismic risk evaluation of a target structure for its entire life-cycle, e.g. 50 years. The prediction of collapse probability is the estimator in the risk-based assessment. While the risk-based assessment is the key in the performance-based earthquake engineering, its application is very limited because this evaluation method is very expensive in terms of simulation and computational efforts. So the evaluation database for many archetype structures usually serve as representative of the specific system. However, there is no such an assessment performed for building stocks in Korea. Consequently, the performance objective of current building code, KBC is not clear at least in a quantitative way. This shortcoming gives an unresolved issue to insurance industry, socio-economic impact, seismic safety policy in national and local governments. In this study, we evaluate the comprehensive seismic performance of an low-rise residential buildings with discontinuous structural walls, so called piloti-type structure which is commonly found in low-rise domestic building stocks. The collapse probability is obtained using the risk integral of a conditioned collapse capacity function and regression of current hazard curve. Based on this approach it is expected to provide a robust tool to seismic safety policy as well as seismic risk analysis such as Probable Maximum Loss (PML) commonly used in the insurance industry.

Evaluation of seismic response of soft-storey infilled frames

  • Santhi, M. Helen;Knight, G.M. Samuel;Muthumani, K.
    • Computers and Concrete
    • /
    • 제2권6호
    • /
    • pp.423-437
    • /
    • 2005
  • In this study two single-bay, three-storey space frames, one with brick masonry infill in the second and third floors representing a soft-storey frame and the other without infill were designed and their 1:3 scale models were constructed according to non-seismic detailing and the similitude law. The models were excited with an intensity of earthquake motion as specified in the form of response spectrum in Indian seismic code IS 1893-2002 using a shake table. The seismic responses of the soft-storey frame such as fundamental frequency, mode shape, base shear and stiffness were compared with that of the bare frame. It was observed that the presence of open ground floor in the soft-storey infilled frame reduced the natural frequency by 30%. The shear demand in the soft-storey frame was found to be more than two and a half times greater than that in the bare frame. From the mode shape it was found that, the bare frame vibrated in the flexure mode whereas the soft-storey frame vibrated in the shear mode. The frames were tested to failure and the damaged soft-storey frame was retrofitted with concrete jacketing and, subjected to same earthquake motions as the original frames. Pushover analysis was carried out using the software package SAP 2000 to validate the test results. The performance point was obtained for all the frames under study, therefore the frames were found to be adequate for gravity loads and moderate earthquakes. It was concluded that the global nonlinear seismic response of reinforced concrete frames with masonry infill can be adequately simulated using static nonlinear pushover analysis.

Explosive loading of multi storey RC buildings: Dynamic response and progressive collapse

  • Weerheijm, J.;Mediavilla, J.;van Doormaal, J.C.A.M.
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.193-212
    • /
    • 2009
  • The resilience of a city confronted with a terrorist bomb attack is the background of the paper. The resilience strongly depends on vital infrastructure and the physical protection of people. The protection buildings provide in case of an external explosion is one of the important elements in safety assessment. Besides the aspect of protection, buildings facilitate and enable many functions, e.g., offices, data storage, -handling and -transfer, energy supply, banks, shopping malls etc. When a building is damaged, the loss of functions is directly related to the location, amount of damage and the damage level. At TNO Defence, Security and Safety methods are developed to quantify the resilience of city infrastructure systems (Weerheijm et al. 2007b). In this framework, the dynamic response, damage levels and residual bearing capacity of multi-storey RC buildings is studied. The current paper addresses the aspects of dynamic response and progressive collapse, as well as the proposed method to relate the structural damage to a volume-damage parameter, which can be linked to the loss of functionality. After a general introduction to the research programme and progressive collapse, the study of the dynamic response and damage due to blast loading for a single RC element is described. Shock tube experiments on plates are used as a reference to study the possibilities of engineering methods and an explicit finite element code to quantify the response and residual bearing capacity. Next the dynamic response and progressive collapse of a multi storey RC building is studied numerically, using a number of models. Conclusions are drawn on the ability to predict initial blast damage and progressive collapse. Finally the link between the structural damage of a building and its loss of functionality is described, which is essential input for the envisaged method to quantify the resilience of city infrastructure.