• 제목/요약/키워드: fuzzy-neuron network

검색결과 38건 처리시간 0.022초

볼과 빔 제어를 위한 퍼지 뉴론을 갖는 신경망 제어기 설계 (The neural network controller design with fuzzy-neuraon and its application to a ball and beam)

  • 신권석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.897-900
    • /
    • 1998
  • Through fuzzy logic controller is very useful to many areas, it is difficult to build up the rule-base by experience and trial-error. So, effective self-tuning fuzzy controller for the position control of ball and beam is designed. In this paper, we developed the neural network control system with fuzzy-neuron which conducts the adjustment process for the parameters to satisfy have nonlinear property of the ball and beam system. The proposed algorithm is based on a fuzzy logic control system using a neural network learinign algorithm which is a back-propagation algorithm. This system learn membership functions with input variables. The purpose of the design is to control the position of the ball along the track by manipulating the angualr position of the serve. As a result, it is concluded that the neural network control system with fuzzy-neuron is more effective than the conventional fuzzy system.

  • PDF

영상 인식을 위한 생리학적 퍼지 신경망 (Physiological Fuzzy Neural Networks for Image Recognition)

  • 김광백;문용은;박충식
    • 지능정보연구
    • /
    • 제11권2호
    • /
    • pp.81-103
    • /
    • 2005
  • 신경계의 뉴런 구조는 흥분 뉴런과 억제 뉴런으로 구성되며 각각의 흥분 뉴런과 억제 뉴런은 주동근 뉴런(agonistic neuron)에 의해 활성화되며 길항근 뉴런(antagonist neuron)에 의해 비활성화 된다. 본 논문에서는 인간 신경계의 생리학적 뉴런 구조를 분석하여 퍼지 논리를 이용한 생리학적 퍼지 신경망을 제안한다. 제안된 구조는 주동근 뉴런에 의해 흥분 뉴런이 될 수 있는 뉴런들을 선택하여 흥분시켜 출력층으로 전달하고 나머지 뉴런들을 억제시켜 출력층에 전달시키지 않는다. 신경계를 기반으로 한 제안된 생리학적 퍼지 신경망의 학습구조는 입력층, 학습 데이터의 특징을 분류하는 중간층, 그리고 출력 층으로 구성된다. 제안된 퍼지 신경망의 학습 및 인식 성능을 평가하기 위해 정확성이 요구되는 의학의 한 분야인 기관지 편평암 영상 인식과 영상 인식의 주요 응용 분야인 차량번호판 인식에 적용하여 기존의 신경망과 성능을 비교 분석하였다. 실험 결과에서는 제안된 생리학적 퍼지 신경망이 기존의 신경망보다 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 인식에 있어서도 우수한 성능이 있음을 확인하였다.

  • PDF

퍼지-뉴럴 융합을 이용한 로보트 Gripper의 힘 제어기 (Force controller of the robot gripper using fuzzy-neural fusion)

  • 임광우;김성현;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.861-865
    • /
    • 1991
  • In general, the fusion of neural network and fuzzy logic theory is based on the fact that neural network and fuzzy logic theory have the common properties that 1) the activation function of a neuron is similar to the membership function of fuzzy variable, and 2) the functions of summation and products of neural network are similar to the Max-Min operator of fuzzy logics. In this paper, a fuzzy-neural network will be proposed and a force controller of the robot gripper, utilizing the fuzzy-neural network, will be presented. The effectiveness of the proposed strategy will be demonstrated by computer simulation.

  • PDF

퍼지 그래픽 시뮬레이터를 이용한 하수처리 시스템 활성오니공정의 최적화 (An optimization of activated sludge process in wastewater treatment system utilizing fuzzy graphic simulator)

  • 남의석;박종진;우광방
    • 제어로봇시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.204-213
    • /
    • 1997
  • In this paper, an application of fuzzy-neuron reasoning to the control of an activated sludge plant is presented. The activated sludge process is widely used in modern wastewater treatment plants. The operation control of the activated sludge process, however, is difficult due to the following reasons : 1)The complexity of the wastewater components, 2)the change of the wastewater influent, and 3)the adjustment errors in the control process. Because of these reasons, it is difficult to obtain mathematical model that really reflect the relationship between the variables and parameters in the process of wastewater treatment correctively and effectively. In this paper, the activated sludge process(A.S.P.) is modeled by a new fuzzy-neuron network representing nonlinear characteristics. These fuzzy-neurons have fuzzy rules with complementary membership function. Based on the constructed model, graphic simulator on X-window system as a graphic integrated environment is implemented. The efficacy of the proposed control scheme was evaluated and demonstrated by means of the field test.

  • PDF

A Neural Fuzzy Learning Algorithm Using Neuron Structure

  • Yang, Hwang-Kyu;Kim, Kwang-Baek;Seo, Chang-Jin;Cha, Eui-Young
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.395-398
    • /
    • 1998
  • In this paper, a method for the improvement of learning speed and convergence rate was proposed applied it to physiological neural structure with the advantages of artificial neural networks and fuzzy theory to physiological neuron structure, To compare the proposed method with conventional the single layer perception algorithm, we applied these algorithms bit parity problem and pattern recognition containing noise. The simulation result indicated that our learning algorithm reduces the possibility of local minima more than the conventional single layer perception does. Furthermore we show that our learning algorithm guarantees the convergence.

  • PDF

진화론적 알고리즘에 의한 퍼지 다항식 뉴론 기반 고급 자기구성 퍼지 다항식 뉴럴 네트워크 구조 설계 (Design of Advanced Self-Organizing Fuzzy Polynomial Neural Networks Based on FPN by Evolutionary Algorithms)

  • 박호성;오성권;안태천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.322-324
    • /
    • 2005
  • In this paper, we introduce the advanced Self-Organizing Fuzzy Polynomial Neural Network based on optimized FPN by evolutionary algorithm and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed model gives rise to a structurally and parametrically optimized network through an optimal parameters design available within Fuzzy Polynomial Neuron(FPN) by means of GA. Through the consecutive process of such structural and parametric optimization, an optimized and flexible the proposed model is generated in a dynamic fashion. The performance of the proposed model is quantified through experimentation that exploits standard data already used in fuzzy modeling. These results reveal superiority of the proposed networks over the existing fuzzy and neural models.

  • PDF

Genetically Optimized Fuzzy Polynomial Neural Network and Its Application to Multi-variable Software Process

  • Lee In-Tae;Oh Sung-Kwun;Kim Hyun-Ki;Pedrycz Witold
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권1호
    • /
    • pp.33-38
    • /
    • 2006
  • In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially Genetic Algorithms(GAs). The conventional FPNN developed so far are based on mechanisms of self-organization and evolutionary optimization. The design of the network exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being provided by the designer and kept fixed throughout the overall development process. This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. It is shown that the proposed advanced genetic algorithms based Fuzzy Polynomial Neural Networks is more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS) dataset to evaluate the performance of the proposed model.

Hopfield neuron based nonlinear constrained programming to fuzzy structural engineering optimization

  • Shih, C.J.;Chang, C.C.
    • Structural Engineering and Mechanics
    • /
    • 제7권5호
    • /
    • pp.485-502
    • /
    • 1999
  • Using the continuous Hopfield network model as the basis to solve the general crisp and fuzzy constrained optimization problem is presented and examined. The model lies in its transformation to a parallel algorithm which distributes the work of numerical optimization to several simultaneously computing processors. The method is applied to different structural engineering design problems that demonstrate this usefulness, satisfaction or potential. The computing algorithm has been given and discussed for a designer who can program it without difficulty.

A Biological Fuzzy Multilayer Perceptron Algorithm

  • Kim, Kwang-Baek;Seo, Chang-Jin;Yang, Hwang-Kyu
    • Journal of information and communication convergence engineering
    • /
    • 제1권3호
    • /
    • pp.104-108
    • /
    • 2003
  • A biologically inspired fuzzy multilayer perceptron is proposed in this paper. The proposed algorithm is established under consideration of biological neuronal structure as well as fuzzy logic operation. We applied this suggested learning algorithm to benchmark problem in neural network such as exclusive OR and 3-bit parity, and to digit image recognition problems. For the comparison between the existing and proposed neural networks, the convergence speed is measured. The result of our simulation indicates that the convergence speed of the proposed learning algorithm is much faster than that of conventional backpropagation algorithm. Furthermore, in the image recognition task, the recognition rate of our learning algorithm is higher than of conventional backpropagation algorithm.

유전론적 최적 퍼지 다항식 뉴럴네트워크와 다변수 소프트웨어 공정으로의 응용 (Genetically Optimized Fuzzy Polynomial Neural Networks and Its Application to Multi-variable Software Process)

  • 이인태;오성권;김현기;이동윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.152-154
    • /
    • 2005
  • In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially Genetic Algorithms(GAs). The design of the network exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being provided by the designer and kept fixed throughout the overall development process. This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. It is shown that the proposed genetic algorithms-based Fuzzy Polynomial Neural Networks is more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS) dataset to evaluate the performance of the proposed model.

  • PDF