• 제목/요약/키워드: fuzzy-genetic algorithms

검색결과 304건 처리시간 0.023초

유전 알고리즘과퍼지 푸론 시스템의 합성 (Fusion of Genetic Algorithms and Fuzzy Inference System)

  • 황희수;오성권;우광방
    • 대한전기학회논문지
    • /
    • 제41권9호
    • /
    • pp.1095-1103
    • /
    • 1992
  • An approach to fuse the fuzzy inference system which is able to deal with imprecise and uncertain information and genetic algorithms which display the excellent robustness in complex optimization problems is presented in this paper. In order to combine genetic algorithms and fuzzy inference engine effectively the new reasoning method is suggested. The efficient identification method of fuzzy rules is proposed through the adjustment of search areas of genetic algorithms. The feasibilty of the proposed approach is evaluated through simulation.

  • PDF

퍼지논리와 유전알고리즘을 이용한 트랙터-트레일러의 후진제어 시뮬레이션 (Backward Control Simulation of Tractor-Trailer Using Fuzzy Logic and Genetic Algorithms)

  • 조성인;기노훈
    • Journal of Biosystems Engineering
    • /
    • 제20권1호
    • /
    • pp.87-94
    • /
    • 1995
  • When farmer loads and unloads farm products with a trailer, linked to a tractor, the tractor-trailer is backed up to the loading duck. However, travelling backward is not easy and takes a time for even skilled operators. Therefore, unmanned backing up is necessary to save the effort. A backward controller of tractor-trailer was simulated using fuzzy logic and genetic algorithms. Operators drive the tractor-trailer back and forth several times for backing up to the loading duck. As the operators did it, a backward controller was designed using fuzzy logic. And genetic algorithms was applied to improve the performance of the backward controller. With the strings coded with the fuzzy membership functions, genetic operations were carried out. After 30 generations, the best fitted fuzzy membership functions were found. Those membership functions were used in the fuzzy backward controller. The fuzzy controller combined with genetic algorithms showed the better results than the fuzzy controller did alone.

  • PDF

The implementation of the Multi-population Genetic Algorithm using Fuzzy Logic Controller

  • Chun, Hyang-Shin;Kwon, Key-Ho
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.80-83
    • /
    • 2003
  • A Genetic algorithm is a searching algorithm that based on the law of the survival of the fittest. Multi-population Genetic Algorithms are a modified form of genetic algorithm. Therefore, experience with fuzzy logic and genetic algorithm has proven to be that a combination of them can efficiently make up for their own deficiency. The Multi-population Genetic Algorithms independently evolve subpopulations. In this paper, we suggest a new coding method that independently evolves subpopulations using the fuzzy logic controller. The fuzzy logic controller has applied two fuzzy logic controllers that are implemented to adaptively adjust the crossover rate and mutation rate during the optimization process. The migration scheme in the multi-population genetic algorithms using fuzzy logic controllers is tested for a function optimization problem, and compared with other group migration schemes, therefore the groups migration scheme is then performed. The results demonstrate that the migration scheme in the multi-population genetic algorithms using fuzzy logic controller has a much better performance.

  • PDF

지능알고리즘에 의한 정수장 약품주입제어에 관한 연구 (A Study on Coagulant Feeding Control of the Water Treatment Plant Using Intelligent Algorithms)

  • 김용열;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제9권1호
    • /
    • pp.57-62
    • /
    • 2003
  • It is difficult to determine the feeding rate of coagulant in the water treatment plant, due to nonlinearity, multivariables and slow response characteristics etc. To deal with this difficulty, the genetic-fuzzy system genetic-equation system and the neural network system were used in determining the feeding rate of the coagulant. Fuzzy system and neural network system are excellently robust in multivariables and nonlinear problems. but fuzzy system is difficult to construct the fuzzy parameter such as the rule table and the membership function. Therefore we made the genetic-fuzzy system by the fusion of genetic algorithms and fuzzy system, and also made the feeding rate equation by genetic algorithms. To train fuzzy system, equation parameter and neural network system, the actual operation data of the water treatment plant was used. We determined optimized feeding rates of coagulant by the fuzzy system, the equation and the neural network and also compared them with the feeding rates of the actual operation data.

유전알고리즘을 이용한 직류직권모터 시스템의 퍼지제어에 관한 연구 (A Study on the Fuzzy Control of Series Wound Motor Drive Systems uUing Genetic Algorithms)

  • 김종건;배종일;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.60-64
    • /
    • 1997
  • Designing fuzzy controller, there are difficulties that we have to determine fuzzy rules and shapes of membership functions which are usually obtained by the amount of trial-and-error or experiences from the experts. In this paper, to overcome these defects, genetic algorithms which is probabilistic search method based on genetics and evolution theory are used to determine fuzzy rules and fuzzy membership functions. We design a series compensation fuzzy controller, then determine basic structures, input-output variables, fuzzy inference methods and defuzzification methods for fuzzy controllers. We develop genetic algorithms which may search more accurate optimal solutions. For evaluating the fuzzy controller performances through experiments upon an actual system, we design the fuzzy controllers for the speed control of a DC series motor with nonlinear characteristics and show good output responses to reference inputs.

  • PDF

강화된 유전알고리즘을 이용한 이중 동조 기반 퍼지 예측시스템 설계 및 응용 (Design of Fuzzy Prediction System based on Dual Tuning using Enhanced Genetic Algorithms)

  • 방영근;이철희
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.184-191
    • /
    • 2010
  • Many researchers have been considering genetic algorithms to system optimization problems. Especially, real-coded genetic algorithms are very effective techniques because they are simpler in coding procedures than binary-coded genetic algorithms and can reduce extra works that increase the length of chromosome for wide search space. Thus, this paper presents a fuzzy system design technique to improve the performance of the fuzzy system. The proposed system consists of two procedures. The primary tuning procedure coarsely tunes fuzzy sets of the system using the k-means clustering algorithm of which the structure is very simple, and then the secondary tuning procedure finely tunes the fuzzy sets using enhanced real-coded genetic algorithms based on the primary procedure. In addition, this paper constructs multiple fuzzy systems using a data preprocessing procedure which is contrived for reflecting various characteristics of nonlinear data. Finally, the proposed fuzzy system is applied to the field of time series prediction and the effectiveness of the proposed techniques are verified by simulations of typical time series examples.

A Study on Genetic Algorithms for Automatic Fuzzy Rule Generation

  • Cho, Hyun-Joon;Wang, Bo-Hyeum
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.275-278
    • /
    • 1996
  • The application of genetic algorithms to fuzzy rule generation holds a great deal of promise in overcoming difficult problems in fuzzy systems design. There are some aspects to be considered when genetic algorithms are used for generating fuzzy rules. In this paper, we will present an aspect about the control surface constructed by the resultant rules. In the extensive simulations, an important observation that the rules searched by genetic algorithms are randomly scattered is made and a solution to this problem is provided by including a smoothness cost in the objective function. We apply the fuzzy rules generated by genetic algorithms to the fuzzy truck backer-upper control system and compare them with the rules made by an expert.

  • PDF

퍼지 제어기의 퍼지규칙 및 멤버쉽 함수 튜닝에 유전알고리즘을 적용한 직류 모터의 속도제어 (Fuzzy Rules and Membership Functions Tunning of Fuzzy Controller Applying Genetic Algorithms of Speed Control of DC Motor)

  • 황기현;김형수;박준호;황창선;김종건
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1021-1023
    • /
    • 1996
  • This paper proposes a design of self-tuning fuzzy rules and membership functions based on genetic algorithms. Sub-optimal fuzzy rules and membership functions are found by using genetic algorithms. Genetic algorithms are used for tuning fuzzy rules and membership functions. A arbitrary speed trajectories are selected for the reference input of the proposed methods. Experimental results show the good performance in the DC motor control system with the self-tuning fuzzy controller based on genetic algorithms.

  • PDF

FUZZY RULE MODIFICATION BY GENETIC ALGORITHMS

  • Park, Seihwan;Lee, Hyung-Kwang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.646-651
    • /
    • 1998
  • Fuzzy control has been used successfully in many practical applications. In traditional methods, experience and control knowledge of human experts are needed to design fuzzy controllers. However, it takes much time and cost. In this paper, an automatic design method for fuzzy controllers using genetic algorithms is proposed. In the method, we proposed an effective encoding scheme and new genetic operators. The maximum number of linguistic terms is restricted to reduce the number of combinatorial fuzzy rules in the research space. The proposed genetic operators maintain the correspondency between membership functions and control rules. The proposed method is applied to a cart centering problem. The result of the experiment has been satisfactory compared with other design methods using genetic algorithms.

  • PDF

기호 코딩을 이용한 유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크의 설계 (Design of Genetic Algorithms-based Fuzzy Polynomial Neural Networks Using Symbolic Encoding)

  • 이인태;오성권;최정내
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.270-272
    • /
    • 2006
  • In this paper, we discuss optimal design of Fuzzy Polynomial Neural Networks by means of Genetic Algorithms(GAs) using symbolic coding for non-linear data. One of the major subject of genetic algorithms is representation of chromosomes. The proposed model optimized by the means genetic algorithms which used symbolic code to represent chromosomes. The proposed gFPNN used a triangle and a Gaussian-like membership function in premise part of rules and design the consequent structure by constant and regression polynomial (linear, quadratic and modified quadratic) function between input and output variables. The performance of the proposed model is quantified through experimentation that exploits standard data already used in fuzzy modeling. These results reveal superiority of the proposed networks over the existing fuzzy and neural models.

  • PDF