• Title/Summary/Keyword: fuzzy-data processing

Search Result 258, Processing Time 0.031 seconds

Distributivity of fuzzy numbers under t-norm based fuzzy arithmetic operations

  • Hong, Dug-Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.93-101
    • /
    • 2003
  • Computation with fuzzy numbers is a prospective branch of a fuzzy set theory regarding the data processing applications. In this paper we consider an open problem about distributivity of fuzzy quantities based on the extension principle suggested by Mare (1997). Indeed, we show that the distributivity on the class of fuzzy numbers holds and min-norm is the only continuous t-norm which holds the distributivity under t-norm based fuzzy arithmetic operations.

  • PDF

Modified Gaussian Filter based on Fuzzy Membership Function for AWGN Removal in Digital Images

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.1
    • /
    • pp.54-60
    • /
    • 2021
  • Various digital devices were supplied throughout the Fourth Industrial Revolution. Accordingly, the importance of data processing has increased. Data processing significantly affects equipment reliability. Thus, the importance of data processing has increased, and various studies have been conducted on this topic. This study proposes a modified Gaussian filter algorithm based on a fuzzy membership function. The proposed algorithm calculates the Gaussian filter weight considering the standard deviation of the filtering mask and computes an estimate according to the fuzzy membership function. The final output is calculated by adding or subtracting the Gaussian filter output and estimate. To evaluate the proposed algorithm, simulations were conducted using existing additive white Gaussian noise removal algorithms. The proposed algorithm was then analyzed by comparing the peak signal-to-noise ratio and differential image. The simulation results show that the proposed algorithm has superior noise reduction performance and improved performance compared to the existing method.

High-speed Fuzzy Inference System in Integrated GUI Environment

  • Lee, Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.50-55
    • /
    • 2004
  • We propose an intgrated Gill environment system having only integer fuzzy operations in the consequent part and the defuzzification stage. In this paper, we also propose an integrated Gill environment system with 4 parallel fuzzy processing units to be operated in parallel on the classification of the sensed image data. In this, we solve the problems of taking longer times as the fuzzy real computations of [0, 1] by using the integer pixel conversion algorithm to convert lines of each fuzzy linguistic term to the closest integer pixels. This procedure is performed automatically in the GUI application program. As a Gill environment, PCI transmission, image data pre-processing, integer pixel mapping and fuzzy membership tuning are considered. This system can be operated in parallel manner for MIMO or MISO systems.

A Method for Fuzzy-Data Processing of Cooked-rice Portion Size Estimation (식품 눈대중량 퍼지데이타의 처리방안에 관한 연구)

  • 김명희
    • Journal of Nutrition and Health
    • /
    • v.27 no.8
    • /
    • pp.856-863
    • /
    • 1994
  • To develop a optimized method for educing the errors associated with the estimation of portion size of foods, fuzzy-dta processing of portion size was performed. Cooked-rice was chosen as a food item. The experiment was conducted in two parts. First, to study the conceptions of respondents to bowl size(large, medium, small), 11 bowls of different size and shape were used and measured the actual weights of cooked-rice. Second, to study the conceptions of respondents to volume(1, 1/2, 1/3, 1/4), 16 different volumes of cooked-rice in bowls of same size and shape were used. Respondents for this study were 31 graduate students. After collecting the data of respondents to size and volume, fuzzy sets of size and volume were produced. The critical values were calculated by defuzzification(mean of maximum method, center of area method). The differences of the weights of cooked-rice in various bowl size and volume between the critical values and the calculated values by average portion size using in conventional methods were compared. The results hows large inter-subject variation in conception to bowl size, especially in large size. However, conception of respondents to volume is relatively accurate. Conception to bowl size seems to be influenced by bowl shape. Considering that the new fuzzy set was calculated by cartesian product(bowl size and volume), bowl shape should be considered in estimation of bowl size to make more accurate fuzzy set for cooked-rice portion size. The limitations of this study were discussed. If more accurate data for size and volume of many other food items are collected by the increased number of respondents, reducing the errors associated with the estimation of portion size of foods and rapid processing will be possible by constructing computer processing systems.

  • PDF

A Mixed Co-clustering Algorithm Based on Information Bottleneck

  • Liu, Yongli;Duan, Tianyi;Wan, Xing;Chao, Hao
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1467-1486
    • /
    • 2017
  • Fuzzy co-clustering is sensitive to noise data. To overcome this noise sensitivity defect, possibilistic clustering relaxes the constraints in FCM-type fuzzy (co-)clustering. In this paper, we introduce a new possibilistic fuzzy co-clustering algorithm based on information bottleneck (ibPFCC). This algorithm combines fuzzy co-clustering and possibilistic clustering, and formulates an objective function which includes a distance function that employs information bottleneck theory to measure the distance between feature data point and feature cluster centroid. Many experiments were conducted on three datasets and one artificial dataset. Experimental results show that ibPFCC is better than such prominent fuzzy (co-)clustering algorithms as FCM, FCCM, RFCC and FCCI, in terms of accuracy and robustness.

Calculating Attribute Values using Interval-valued Fuzzy Sets in Fuzzy Object-oriented Data Models (퍼지객체지향자료모형에서 구간값 퍼지집합을 이용한 속성값 계산)

  • Cho Sang-Yeop;Lee Jong-Chan
    • Journal of Internet Computing and Services
    • /
    • v.4 no.4
    • /
    • pp.45-51
    • /
    • 2003
  • In general, the values for attribute appearing in fuzzy object-oriented data models are represented by the fuzzy sets. If it can allow the attribute values in the fuzzy object-oriented data models to be represented by the interval-valued fuzzy sets, then it can allow the fuzzy object-oriented data models to represent the attribute values in more flexible manner. The attribute values of frames appearing in the inheritance structure of the fuzzy object-oriented data models are calculated by a prloritized conjunction operation using interval-valued fuzzy sets. This approach can be applied to knowledge and information processing in which degree of membership is represented as not the conventional fuzzy sets but the interval-valued fuzzy sets.

  • PDF

A New Image Clustering Method Based on the Fuzzy Harmony Search Algorithm and Fourier Transform

  • Bekkouche, Ibtissem;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.555-576
    • /
    • 2016
  • In the conventional clustering algorithms, an object could be assigned to only one group. However, this is sometimes not the case in reality, there are cases where the data do not belong to one group. As against, the fuzzy clustering takes into consideration the degree of fuzzy membership of each pixel relative to different classes. In order to overcome some shortcoming with traditional clustering methods, such as slow convergence and their sensitivity to initialization values, we have used the Harmony Search algorithm. It is based on the population metaheuristic algorithm, imitating the musical improvisation process. The major thrust of this algorithm lies in its ability to integrate the key components of population-based methods and local search-based methods in a simple optimization model. We propose in this paper a new unsupervised clustering method called the Fuzzy Harmony Search-Fourier Transform (FHS-FT). It is based on hybridization fuzzy clustering and the harmony search algorithm to increase its exploitation process and to further improve the generated solution, while the Fourier transform to increase the size of the image's data. The results show that the proposed method is able to provide viable solutions as compared to previous work.

Parallel Fuzzy Inference Method for Large Volumes of Satellite Images

  • Lee, Sang-Gu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.119-124
    • /
    • 2001
  • In this pattern recognition on the large volumes of remote sensing satellite images, the inference time is much increased. In the case of the remote sensing data [5] having 4 wavebands, the 778 training patterns are learned. Each land cover pattern is classified by using 159, 900 patterns including the trained patterns. For the fuzzy classification, the 778 fuzzy rules are generated. Each fuzzy rule has 4 fuzzy variables in the condition part. Therefore, high performance parallel fuzzy inference system is needed. In this paper, we propose a novel parallel fuzzy inference system on T3E parallel computer. In this, fuzzy rules are distributed and executed simultaneously. The ONE_To_ALL algorithm is used to broadcast the fuzzy input to the all nodes. The results of the MIN/MAX operations are transferred to the output processor by the ALL_TO_ONE algorithm. By parallel processing of the fuzzy rules, the parallel fuzzy inference algorithm extracts match parallelism and achieves a good speed factor. This system can be used in a large expert system that ha many inference variables in the condition and the consequent part.

  • PDF

Grouping Parts Based on Group Technology Using a Neural Network (신경망을 이용한 GT 부품군 형성의 자동화)

  • Lee, Sung-Youl
    • IE interfaces
    • /
    • v.11 no.2
    • /
    • pp.119-124
    • /
    • 1998
  • This paper proposes a new part family classification system (IPFACS: Image Processing and Fuzzy ART based Clustering System), which incorporates image processing techniques and a modified fuzzy ART neural network algorithm. IPFACS can classify parts based on geometrical shape and manufacturing attributes, simultaneously. With a proper reduction and normalization of an image data through the image processing methods and adding method in the modified Fuzzy ART, different types of geometrical shape data and manufacturing attribute data can be simultaneously classified in the same system. IPFACS has been tested for an example set of hypothetical parts. The results show that IPFACS provides a good feasible approach to form families based on both geometrical shape and manufacturing attributes.

  • PDF

Fuzzy Petri-net Approach to Fault Diagnosis in Power Systems Using the Time Sequence Information of Protection System

  • Roh, Myong-Gyun;Hong, Sang-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1727-1731
    • /
    • 2003
  • In this paper we proposed backward fuzzy Petri-net to diagnoses faults in power systems by using the time sequence information of protection system. As the complexity of power systems increases, especially in the case of multiple faults or incorrect operation of protective devices, fault diagnosis requires new and systematic methods to the reasoning process, which improves both its accuracy and its efficiency. The fuzzy Petri-net models of protection system are composed of the operating process of protective devices and the fault diagnosis process. Fault diagnosis model, which makes use of the nature of fuzzy Petri-net, is developed to overcome the drawbacks of methods that depend on operator knowledge. The proposed method can reduce processing time and increase accuracy when compared with the traditional methods. And also this method covers online processing of real-time data from SCADA (Supervisory Control and Data Acquisition)

  • PDF