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Distributivity of fuzzy numbers

under t-norm based fuzzy arithmetic operations

Dug Hun Hong1)

Abstract

Computation with fuzzy numbers is a prospective branch of a fuzzy set 
theory regarding the data processing applications. In this paper we 
consider an open problem about distributivity of fuzzy quantities based on 
the  extension principle suggested by Mareš (1997). Indeed, we show that 
the distributivity on the class of fuzzy numbers holds and min-norm is 
the only continuous t-norm which holds the distributivity under t-norm 
based fuzzy arithmetic operations.
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In this paper, we follow the same notations that in Mareš (1997).

1. Notations and basic notions

In the whole paper we denote by R  the set of real numbers.

Any fuzzy subset a  of R  is called a fuzzy quantity with membership function 

μ a :R→[0,1]  if and only if

∃x 0∈R :μ a(x 0 )=1,

∃x 1,x 2∈R, x 1 < x 2, ∀x∉[x 1,x 2]:μ a(x)=0.

We denote by ℜ the set of all fuzzy quantities.

A fuzzy number is a fuzzy quantity which is convex which means that an α

1) Associate Professor, School of Mechanical and Automotive Engineering, 
   Catholic University of Daegu, Kyungbuk, 712-702, Korea
   E-mail : dhhong@cuth.cataegu.ac.kr



Dug Hun Hong94

-cut a α= {μ a≥α}= [a
α
l ,a

α
r]  yields the property of nesting : that is

(α' < α)→(a α'l ≤a
α
l , a

α'
r ≤a

α
r ).

There are many different classes of fuzzy numbers.

Let a∈R  and let there exist real numbers a 1 ≤ a 0 ≤ a' 0 ≤ a 2 ∈R  such that

μ a(x)=

ꀊ

ꀖ

ꀈ

︳︳︳︳︳︳︳︳︳︳︳

︳︳︳︳︳︳︳︳︳︳︳

  0           for x < a 1  or x > a 2,

  1 for a 0≤x≤a' 0,

x-a 1
a 0-a 1

for  x∈[a 1,a 0),

x-a 2
a' 0-a 2

for  x∈(a' 0 ,a 2].

Then a  is called trapezoidal. Equality a 1=a 0  naturally means μ a(x)= 0  for 

x < a 0, μ a(a 0 )=1  and, analogously, if a 2=a' 0  then μ a(x)=0  for x>a' 0, 

μ a(a' 0 )=1 . If a 0=a' 0  then the fuzzy quantity a  is called triangular. 

The equality a= b  for a,b∈ℜ means μ a(x)=μ b (x)  for all x∈R.

If r∈R  then we denote by < r>  the degenerated fuzzy quantity defined by

μ < r >(r)=1,  μ < r >(x)=0 for x≠r, x∈R.

If a∈ℜ then -a∈ℜ is the fuzzy quantity defined by

μ - a(x)=μ a (-x)  for all x∈R.

The elementary arithmetic operations over fuzzy quantities are derived from so 

called extension principle.

Definition 1 (Extension Principle). Let f :R×R →R  be a binary operation over 

real numbers. Then it can be extended to the operation over fuzzy quantities, 

f :ℜ×ℜ →ℜ . If we denote for a,b∈ℜ  the quantity c= f(a,b)  then the 

membership function μ c  is derived from the membership functions μ a  and μ b  by

μ c(z)= sup[ min(μ a(x),μ b(y)) :x,y∈R, z= f(x,y)].
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2. Arithmetic operations

The elementary binary arithmetic operations with fuzzy quantities or with fuzzy 

quantities or with crisp and fuzzy numbers are mostly based on the extension 

principle (cf. Dubois & Prade, 1988, Fullér, 1991). 

Let r∈R, a∈ℜ  then r+a∈ℜ  is defined by

μ r+ a(x)=μ a (x-r)   for any  x∈R.

If a,b∈ℜ  then a⊕b∈ℜ  is defined by

μ a⊕b(x)= sup y∈R( min(μ a(y),μ b(x-y))),  x∈R.

It is easy to see that r+a=< r> ⊕a.

Let r∈R, a∈ℜ  then r⋅a∈ℜ  is defined for x∈R  by

μ r⋅a(x)={
μa(

x
r
)  for  r≠0

μ < 0 >(x) for  r=0.

If a,b∈ℜ  then a⊙b∈ℜ  is defined by

μ a⊙b(x)= sup y∈R 0( min(μa(y),μ b(
x
y
))),

                          x∈R 0=R-{0},

μ a⊙b(0)=max(μa(0),μ b(0)).

It is easy to see that r⋅a=< r> ⊙a for r≠0.
Generally, all operations over fuzzy quantities given above generalize the 

operations over crisp operands. For degenerated fuzzy quantities, a=<x>, b=<y>, 

x,y∈R, r∈R,

r+a=<r+x>,    a⊕b=< x+y>,

r⋅a=< r⋅x>,    a⊙b=< x⋅y> .
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3. Survey of properties

The main problem with processing fuzzy quantities are connected with the 

validity of group properties and distributivity. It is natural to consider -a  for the 

opposite to a  but a⊕(-a)  is not equal < 0>. More principle problem is 

connected with one of distributivity conditions. Namely, if r 1, r 2∈R  and a∈ℜ  

then (r 1+r 2)⋅a  is not generally equal to (r 1⋅a)⊕(r 2⋅a). It means that 

a⊕a  need not be the same like 2⋅a. 

There is a method of avoiding there imperfectness: 

We say that s  is 0-symmetric if and only if

μ s(x)=μ s(-x)   for all x∈R.

The set of all 0-symmetric fuzzy quantities is denoted by S 0.

Let a,b∈ℜ. Then we say that a  is additively equivalent to b, and write 

a∼ ⊕ b  if and only if there exist s 1,s 2∈S 0. such that

a⊕ s 1= b+ s 2.

Then it can be easily seen that for a∈ℜ, s∈S 0,

a⊕s∼ ⊕ a,  s∼ ⊕ < 0>

a⊕(-a) ∼ ⊕ s,  s⊙a∼ ⊕ s

Namely, the 0-symmetric ones are able to play the role of fuzzy zero (see 

Kaufmann & Gupta, 1991).

Fuzzy quantity b∈ℜ  is call almost trapezoidal if and only if there exist 

trapezoial fuzzy quantity a  such that a∼ ⊕ b.

If b  is almost trapezoidal then for r 1,r 2∈ℜ

(r 1+r 2)⋅b∼ ⊕ r 1⋅b⊕r 2⋅b.

Here, an open problem suggested by Mareš (1997) is the validity of 

(r 1+r 2 )⋅a∼ ⊕ r 1⋅a⊕r 2⋅a  for more general fuzzy quantity a.
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4. A proof of the open problem

In this section, we prove the following main result.

Theorem 1. Let a  be a fuzzy number, then for r 1,r 2∈R

(r 1+r 2)⋅a∼ ⊕ r 1⋅a⊕r 2⋅a.

The following lemma is easy to check.

Lemma 1. Let a,b∈ℜ  then a⊕(-b)= s  for s∈S 0  if and only if a∼ ⊕ b.

The following two results are well-known. 

Resolution Theorem(Kaufmann & Gupta, 1991). Let a∈ℜ  and 

a α= [a
α
1 ,a

α
2 ], then

a=∪ αα⋅a α where α⋅a α=α∧a α.

Theorem 2 (Nguyen, 1978). Let f :R×R →R  be a continuous function and let 

a  and b  be fuzzy numbers. Then

(f (a,b)) α= f (a α,b α)

where f (a α,b α)={f (x 1,x 2) |x 1∈a α, x 2∈b α}.

Let f(x,y)= x+y, f(x,y)= xy  and let a α=[a
α
1 ,a

α
2 ]  and b α= [b

α
1 ,b

α
2 ]  be 

two fuzzy numbers. Applying above theorem we get

(a⊕b) α = a α+b α= [a
α
1 +b

α
1 ,a

α
2 +b

α
2 ],

(a⊙b) α = a αb α= [ min {a
α
1 b
α
1 ,a

α
1 b
α
2 ,a

α
2 b
α
1 ,a

α
2 b
α
2 },

       max {a α1 b
α
1 ,a

α
1 b
α
2 ,a

α
2 b
α
1 ,a

α
2 b
α
2 }].

Proof of Theorem 1. By Lemma 1, it is sufficient to show

(r 1+r 2)⋅a⊕( ( -r 1 )⋅a⊕( -r 2 )⋅a)= s∈S 0,
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and hence, by Resolution Theorem, it is sufficient to show that for α ∈[0,1],

( (r 1+r 2)⋅a⊕( ( -r 1 )⋅a⊕( -r 2 )⋅a)) α  is symmetric interval.

Now noting that (r⋅a) α= [ min {ra
α
1 ,ra

α
2 }, max {ra

α
1 ,ra

α
2 }], we have, by 

Lemma 2,

( (r 1+r 2)⋅a) α=[ min {(r 1+r 2)a
α
1 ,(r 1+r 2)a

α
2 }, max {(r 1+r 2)a

α
1 ,(r 1+r 2)a

α
2 }]

and

( ( -r 1 )⋅a⊕( -r 2 ) ⋅a) α

   = [ min {( -r 1)a
α
1 +( -r 2)a

α
1 ,( -r 1)a

α
2 +( -r 2)a

α
1 ,

         ( -r 1 )a
α
1 +( -r 2 )a

α
2 ,( -r 1 )a

α
2 +( -r 2 )a

α
2 },

       max {( -r 1 )a
α
1 +( -r 2 )a

α
1 ,( -r 1 )a

α
2 +( -r 2 )a

α
1 ,

         ( -r 1 )a
α
1 +( -r 2 )a

α
2 ,( -r 1 )a

α
2 +( -r 2 )a

α
2 }],

and hence

( (r 1+r 2)⋅a⊕( ( -r 1 )⋅a⊕( -r 2 )⋅a)) α

     = [ min {(r 1+r 2)(a
α
1 -a

α
2 ),(r 1+r 2)(a

α
2 -a

α
1 ),

              r 1(a
α
1 -a

α
2 ),r 1(a

α
2 -a

α
1 ) },

        max {(r 1+r 2)(a
α
1 -a

α
2 ),(r 1+r 2)(a

α
2 -a

α
1 ),

              r 1(a
α
1 -a

α
2 ),r 1(a

α
2 -a

α
1 ) }].

Indeed,

         ( (r 1+r 2)⋅a⊕( ( -r 1 )⋅a⊕( -r 2)⋅a)) α

= [-(r 1+r 2)(a
α
2 -a

α
1 ),(r 1+r 2)(a

α
2 -a

α
1 )]  for r 1,r 2≥0,

[ (r 1+r 2)(a
α
2 -a

α
1 ),-(r 1+r 2)(a

α
2 -a

α
1 )]  for r 1,r 2≤0,

   

[-r 2 (a
α
2 -a

α
1 ),r 2(a

α
2 -a

α
1 )]  for r 1≤0≤r 2 and |r 1|≤|r 2|,

[r 1 (a
α
2 -a

α
1 ),-r 1 (a

α
2 -a

α
1 )]  for  r 1≤0≤r 2 and |r 1|≥|r 2|,

[r 2 (a
α
2 -a

α
1 ),-r 2 (a

α
2 -a

α
1 )]  for  r 2≤0≤r 1 and |r 1|≤|r 2|,

[-r 1 (a
α
2 -a

α
1 ),r 1(a

α
2 -a

α
1 )]  for r 2≤0≤r 1 and |r 1|≥|r 2|

            is symmetric interval which completes the proof.
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5. Distributivity of fuzzy numbers under t-norm based fuzzy 

arithmetic operations

It is also needed to consider the distributivity of fuzzy numbers under $t$-norm 

based fuzzy arithmetic operations.

Definition 2. A mapping T : [0,1]×[0,1]→[0,1]  is a triangular norm ( t
-norm for short) if and only if it is symmetric, associative, non-decreasing in 

each argument and T(a,1)=a  for all a∈[0,1].

In the definition of extension principle one can use any t-norm for modeling the 

conjunction operator. 

Definition 1'. Let T  be a t-norm and let f :R ×R →R  be a binary operation 

over real numbers. Then it can be extended to the operation over fuzzy quantities, 

f :ℜ×ℜ →ℜ . If we denote for a,b∈ℜ  the quantity c= f (a,b)  then the 

membership function μ c  is derived from the membership functions μ a  and μ b  by

μ c(z)= sup[T (μ a (x),μ b(y)) :x,y∈R,z= f (x,y)].

Specially, if T  is a t-norm and f (x 1,x 2)= x 1+x 2  is the addition operation on 

the real line then the sup- t  extended sum of a  and b, called T-sum and 

denoted by a⊕Tb, is defined by

μ a⊕Tb
(x)= sup y∈R(T (μ a (y),μ b(x-y))), x∈R,

and if f (x 1 ,x 2)=x 1x 2  is the multiplication operation on the real line the T

-product of a  and b, denoted by a⊙Tb, is defined by

μ a⊙Tb(x)= sup y∈R 0(T (μ a (y),μ b(x/y))), x∈R.

In this section, we show that, for every continuous t-norm, the distributivity of 

fuzzy numbers under t-norm based fuzzy arithmetic operations dose not hold.

We need the following two known results. 

Lemma 3 (Fullér, 1998). T (x, x)= x  holds for any x∈[0,1]  if and only if 

T  is the minimum norm. 
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The following theorem illustrates that if we use an arbitrary t-norm instead of 

min-norm in Zadeh's extension principle then we obtain result similar to those of 

Nguyen(1978).

Theorem 3 (Fullér & Keresatfalvi, 1991). If f :R ×R →R  is continuous and 

t-norm T  is upper semicontinuous, then

(f (a,b)) α= ∪
T( ξ,η)≥α

f (a ξ,b η), α∈(0,1]

hold for a,b∈ℜ.

Now, let μ a(x)=1-|x |  on [-1,1]  and zero otherwise and let T  be 

continuous t-norm which is not minimum norm. Then, by Lemma 3, there exists 

x 0∈(0,1)  such that T (x 0,x 0) < x 0, and hence by continuity of T, for some ε > 0.

inf {max (ξ,η)|T (ξ,η)≥x 0}= x 0+ε.

We also have that, since minimum norm is the biggest t-norm,

inf {min(ξ,η) |T (ξ,η)≥x 0}= x 0.

Let r 1=r 2=1, then  ( (r 1+r 2)⋅a) x 0= [2(x 0-1),2(1-x 0)]  and, (r 1⋅a) α=  

(r 2⋅a) α= [α-1,1-α]  and hence, by Theorem 3,

(r 1⋅a⊕Tr 2⋅a) ⊂ [2(x 0-1)+ε, 2(1-x 0)-ε].

Therefore (r 1+r 2)⋅a≠ r 1⋅a ⊕T r 2⋅a.

6. Conclusion

The fuzzy quantities do not form an additive group if the strict equality is 

demanded and < 0>  is considered for the zero. In this paper, we have shown that 

the set of fuzzy numbers become linear spaces by substituting strict equality by 

additive equivalence and taking the class S 0  for “fuzzy zero” and min-norm is 

the only  continuous t-norm which holds the distributivity under t-norm based 

fuzzy arithmetic operation on the class of fuzzy numbers. We note that most of 
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theory and applications can be applied within the set of fuzzy numbers without 

any difficulties. So this generalization makes sense.
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