• Title/Summary/Keyword: fuzzy-clustering

Search Result 734, Processing Time 0.02 seconds

Design of pRBFNNs Pattern Classifier-based Face Recognition System Using 2-Directional 2-Dimensional PCA Algorithm ((2D)2PCA 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jin, Yong-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.195-201
    • /
    • 2014
  • In this study, face recognition system was designed based on polynomial Radial Basis Function Neural Networks(pRBFNNs) pattern classifier using 2-directional 2-dimensional principal component analysis algorithm. Existing one dimensional PCA leads to the reduction of dimension of image expressed by the multiplication of rows and columns. However $(2D)^2PCA$(2-Directional 2-Dimensional Principal Components Analysis) is conducted to reduce dimension to each row and column of image. and then the proposed intelligent pattern classifier evaluates performance using reduced images. The proposed pRBFNNs consist of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with the aid of fuzzy c-means clustering. In the conclusion part of rules. the connection weight of RBFNNs is represented as the linear type of polynomial. The essential design parameters (including the number of inputs and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. Using Yale and AT&T dataset widely used in face recognition, the recognition rate is obtained and evaluated. Additionally IC&CI Lab dataset is experimented with for performance evaluation.

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.

Design of Optimized pRBFNNs-based Face Recognition Algorithm Using Two-dimensional Image and ASM Algorithm (최적 pRBFNNs 패턴분류기 기반 2차원 영상과 ASM 알고리즘을 이용한 얼굴인식 알고리즘 설계)

  • Oh, Sung-Kwun;Ma, Chang-Min;Yoo, Sung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.749-754
    • /
    • 2011
  • In this study, we propose the design of optimized pRBFNNs-based face recognition system using two-dimensional Image and ASM algorithm. usually the existing 2 dimensional face recognition methods have the effects of the scale change of the image, position variation or the backgrounds of an image. In this paper, the face region information obtained from the detected face region is used for the compensation of these defects. In this paper, we use a CCD camera to obtain a picture frame directly. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. AdaBoost algorithm is used for the detection of face image between face and non-face image area. We can butt up personal profile by extracting the both face contour and shape using ASM(Active Shape Model) and then reduce dimension of image data using PCA. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of RBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to real-time face image database and then demonstrated from viewpoint of the output performance and recognition rate.

Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method (CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • In this study, we introduce robust face recognition system with illumination variation realized with the aid of CT preprocessing method. As preprocessing algorithm, Census Transform(CT) algorithm is used to extract locally facial features under unilluminated condition. The dimension reduction of the preprocessed data is carried out by using $(2D)^2$PCA which is the extended type of PCA. Feature data extracted through dimension algorithm is used as the inputs of proposed radial basis function neural networks. The hidden layer of the radial basis function neural networks(RBFNN) is built up by fuzzy c-means(FCM) clustering algorithm and the connection weights of the networks are described as the coefficients of linear polynomial function. The essential design parameters (including the number of inputs and fuzzification coefficient) of the proposed networks are optimized by means of artificial bee colony(ABC) algorithm. This study is experimented with both Yale Face database B and CMU PIE database to evaluate the performance of the proposed system.

Design of RBFNN-based Emotional Lighting System Using RGBW LED (RGBW LED 이용한 RBFNN 기반 감성조명 시스템 설계)

  • Lim, Sung-Joon;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.696-704
    • /
    • 2013
  • In this paper, we introduce the LED emotional lighting system realized with the aid of both intelligent algorithm and RGB LED combined with White LED. Generally, the illumination is known as a design factor to form the living place that affects human's emotion and action in the light- space as well as the purpose to light up the specific space. The LED emotional lighting system that can express emotional atmosphere as well as control the quantity of light is designed by using both RGB LED to form the emotional mood and W LED to get sufficient amount of light. RBFNNs is used as the intelligent algorithm and the network model designed with the aid of LED control parameters (viz. color coordinates (x and y) related to color temperature, and lux as inputs, RGBW current as output) plays an important role to build up the LED emotional lighting system for obtaining appropriate color space. Unlike conventional RBFNNs, Fuzzy C-Means(FCM) clustering method is used to obtain the fitness values of the receptive function, and the connection weights of the consequence part of networks are expressed by polynomial functions. Also, the parameters of RBFNN model are optimized by using PSO(Particle Swarm Optimization). The proposed LED emotional lighting can save the energy by using the LED light source and improve the ability to work as well as to learn by making an adequate mood under diverse surrounding conditions.

A Study for an Optimal Load Balancing Algorithm based on the Real-Time Server Monitor of a Real Server (리얼 서버의 실시간 서버 모니터에 의한 최적 로드 밸런싱 알고리즘에 관한 연구)

  • Han, Il-Seok;Kim, Wan-Yong;Kim, Hag-Bae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.201-204
    • /
    • 2003
  • At a consequence of WWW large popularity, the internet has suffered from various performance problems, such as network congestion and overloaded servers. These days, it is not uncommon to find servers refusing connections because they are overloaded. Web server performance has always been a key issue in the design and operation of on-line systems. With regard to Internet, performance is also critical, because users want fast and easy access to all objects (e.g., documents, graphics, audio, and video) available on the net. To solve this problem, a number of companies are exploring the benefits of having multiple geographically or locally distributed Internet sites. This requires a comprehensive scheme for traffic management, which includes the principle of an optimal load balancing of client requests across multiple clusters of real servers. This paper focuses on the performance analysis of Web server and we apply these results to load balancing in clustering web server. It also discusses the mam steps needed to carry out a WWW performance analysis effort and shows relations between the workload characteristics and system resource usage. Also, we will introduce an optimal load balancing algorithm base on the RTSM (Real-Time Server Monitor) and Fuzzy Inference Engine for the local status of a real server, and the benefits is provided with of the suggested method.

  • PDF

Face Detection for Automatic Avatar Creation by using Deformable Template and GA (Deformable Template과 GA를 이용한 얼굴 인식 및 아바타 자동 생성)

  • Park Tae-Young;Kwon Min-Su;Kang Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.110-115
    • /
    • 2005
  • This paper proposes the method to detect contours of a face, eyes and a mouth in a color image for making an avatar automatically. First, we use the HSI color model to exclude the effect of various light condition, and we find skin regions in an input image by using the skin color is defined on HS-plane. And then, we use deformable templates and Genetic Algorithm(GA) to detect contours of a face, eyes and a mouth. Deformable templates consist of B-spline curves and control point vectors. Those can represent various shape of a face, eyes and a mouth. And GA is very useful search procedure based on the mechanics of natural selection and natural genetics. Second, an avatar is created automatically by using contours and Fuzzy C-means clustering(FCM). FCM is used to reduce the number of face color As a result, we could create avatars like handmade caricatures which can represent the user's identity, differing from ones generated by the existing methods.

Short-term Forecasting of Power Demand based on AREA (AREA 활용 전력수요 단기 예측)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.

Defect Severity-based Ensemble Model using FCM (FCM을 적용한 결함심각도 기반 앙상블 모델)

  • Lee, Na-Young;Kwon, Ki-Tae
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.12
    • /
    • pp.681-686
    • /
    • 2016
  • Software defect prediction is an important factor in efficient project management and success. The severity of the defect usually determines the degree to which the project is affected. However, existing studies focus only on the presence or absence of a defect and not the severity of defect. In this study, we proposed an ensemble model using FCM based on defect severity. The severity of the defect of NASA data set's PC4 was reclassified. To select the input column that affected the severity of the defect, we extracted the important defect factor of the data set using Random Forest (RF). We evaluated the performance of the model by changing the parameters in the 10-fold cross-validation. The evaluation results were as follows. First, defect severities were reclassified from 58, 40, 80 to 30, 20, 128. Second, BRANCH_COUNT was an important input column for the degree of severity in terms of accuracy and node impurities. Third, smaller tree number led to more variables for good performance.

A Study on the Extraction of Slope Surface Orientation using LIDAR with respect to Triangulation Method and Sampling on the Point Cloud (LIDAR를 이용한 삼차원 점군 데이터의 삼각망 구성 방법 및 샘플링에 따른 암반 불연속면 방향 검출에 관한 연구)

  • Lee, Sudeuk;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.46-58
    • /
    • 2016
  • In this study, a LIDAR laser scanner was used to scan a rock slope around Mt. Gwanak and to produce point cloud from which directional information of rock joint surfaces shall be extracted. It was analyzed using two different algorithms, i.e. Ball Pivoting and Wrap algorithm, and four sampling intervals, i.e. raw, 2, 5, and 10 cm. The results of Fuzzy K-mean clustering were analyzed on the stereonet. As a result, the Ball Pivoting and Wrap algorithms were considered suitable for extraction of rock surface orientation. In the case of 5 cm sampling interval, both triangulation algorithms extracted the most number of the patch and patched area.