• Title/Summary/Keyword: fuzzy-clustering

Search Result 734, Processing Time 0.019 seconds

Fuzzy Clustering Algorithm for Web-mining (웹마이닝을 위한 퍼지 클러스터링 알고리즘)

  • Lim, Young-Hee;Song, Ji-Young;Park, Dai-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.219-227
    • /
    • 2002
  • The post-clustering algorithms, which cluster the result of Web search engine, have some different requirements from conventional clustering algorithms. In this paper, we propose the new post-clustering algorithm satisfying those of requirements as many as possible. The proposed fuzzy Concept ART is the form of combining the concept vector having several advantages in document clustering with fuzzy ART known as real time clustering algorithms on the basis of fuzzy set theory. Moreover we show that it can be applicable to general-purpose clustering as well as post clustering.

An Overview of Unsupervised and Semi-Supervised Fuzzy Kernel Clustering

  • Frigui, Hichem;Bchir, Ouiem;Baili, Naouel
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.254-268
    • /
    • 2013
  • For real-world clustering tasks, the input data is typically not easily separable due to the highly complex data structure or when clusters vary in size, density and shape. Kernel-based clustering has proven to be an effective approach to partition such data. In this paper, we provide an overview of several fuzzy kernel clustering algorithms. We focus on methods that optimize an fuzzy C-mean-type objective function. We highlight the advantages and disadvantages of each method. In addition to the completely unsupervised algorithms, we also provide an overview of some semi-supervised fuzzy kernel clustering algorithms. These algorithms use partial supervision information to guide the optimization process and avoid local minima. We also provide an overview of the different approaches that have been used to extend kernel clustering to handle very large data sets.

A Mixed Co-clustering Algorithm Based on Information Bottleneck

  • Liu, Yongli;Duan, Tianyi;Wan, Xing;Chao, Hao
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1467-1486
    • /
    • 2017
  • Fuzzy co-clustering is sensitive to noise data. To overcome this noise sensitivity defect, possibilistic clustering relaxes the constraints in FCM-type fuzzy (co-)clustering. In this paper, we introduce a new possibilistic fuzzy co-clustering algorithm based on information bottleneck (ibPFCC). This algorithm combines fuzzy co-clustering and possibilistic clustering, and formulates an objective function which includes a distance function that employs information bottleneck theory to measure the distance between feature data point and feature cluster centroid. Many experiments were conducted on three datasets and one artificial dataset. Experimental results show that ibPFCC is better than such prominent fuzzy (co-)clustering algorithms as FCM, FCCM, RFCC and FCCI, in terms of accuracy and robustness.

VS-FCM: Validity-guided Spatial Fuzzy c-Means Clustering for Image Segmentation

  • Kang, Bo-Yeong;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.89-93
    • /
    • 2010
  • In this paper a new fuzzy clustering approach to the color clustering problem has been proposed. To deal with the limitations of the traditional FCM algorithm, we propose a spatial homogeneity-based FCM algorithm. Moreover, the cluster validity index is employed to automatically determine the number of clusters for a given image. We refer to this method as VS-FCM algorithm. The effectiveness of the proposed method is demonstrated through various clustering examples.

THE FUZZY CLUSTERING ALGORITHM AND SELF-ORGANIZING NEURAL NETWORKS TO IDENTIFY POTENTIALLY FAILING BANKS

  • Lee, Gi-Dong
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.485-493
    • /
    • 2005
  • Using 1991 FDIC financial statement data, we develop fuzzy clusters of the data set. We also identify the distinctive characteristics of the fuzzy clustering algorithm and compare the closest hard-partitioning result of the fuzzy clustering algorithm with the outcomes of two self-organizing neural networks. When nine clusters are used, our analysis shows that the fuzzy clustering method distinctly groups failed and extreme performance banks from control (healthy) banks. The experimental results also show that the fuzzy clustering method and the self-organizing neural networks are promising tools in identifying potentially failing banks.

  • PDF

Identification of Plastic Wastes by Using Fuzzy Radial Basis Function Neural Networks Classifier with Conditional Fuzzy C-Means Clustering

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1872-1879
    • /
    • 2016
  • The techniques to recycle and reuse plastics attract public attention. These public attraction and needs result in improving the recycling technique. However, the identification technique for black plastic wastes still have big problem that the spectrum extracted from near infrared radiation spectroscopy is not clear and is contaminated by noise. To overcome this problem, we apply Raman spectroscopy to extract a clear spectrum of plastic material. In addition, to improve the classification ability of fuzzy Radial Basis Function Neural Networks, we apply supervised learning based clustering method instead of unsupervised clustering method. The conditional fuzzy C-Means clustering method, which is a kind of supervised learning based clustering algorithms, is used to determine the location of radial basis functions. The conditional fuzzy C-Means clustering analyzes the data distribution over input space under the supervision of auxiliary information. The auxiliary information is defined by using k Nearest Neighbor approach.

Automatic Switching of Clustering Methods based on Fuzzy Inference in Bibliographic Big Data Retrieval System

  • Zolkepli, Maslina;Dong, Fangyan;Hirota, Kaoru
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.256-267
    • /
    • 2014
  • An automatic switch among ensembles of clustering algorithms is proposed as a part of the bibliographic big data retrieval system by utilizing a fuzzy inference engine as a decision support tool to select the fastest performing clustering algorithm between fuzzy C-means (FCM) clustering, Newman-Girvan clustering, and the combination of both. It aims to realize the best clustering performance with the reduction of computational complexity from O($n^3$) to O(n). The automatic switch is developed by using fuzzy logic controller written in Java and accepts 3 inputs from each clustering result, i.e., number of clusters, number of vertices, and time taken to complete the clustering process. The experimental results on PC (Intel Core i5-3210M at 2.50 GHz) demonstrates that the combination of both clustering algorithms is selected as the best performing algorithm in 20 out of 27 cases with the highest percentage of 83.99%, completed in 161 seconds. The self-adapted FCM is selected as the best performing algorithm in 4 cases and the Newman-Girvan is selected in 3 cases.The automatic switch is to be incorporated into the bibliographic big data retrieval system that focuses on visualization of fuzzy relationship using hybrid approach combining FCM and Newman-Girvan algorithm, and is planning to be released to the public through the Internet.

Genetically Optimization of Fuzzy C-Means Clustering based Fuzzy Neural Networks (Subtractive Clustering 알고리즘을 이용한 퍼지 RBF 뉴럴네트워크의 동정)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.239-240
    • /
    • 2008
  • 본 논문에서는 Subtractive clustering 알고리즘을 이용한 Fuzzy Radial Basis Function Neural Network (FRBFNN)의 규칙 수를 자동적으로 생성하는 방법을 제시한다. FRBFNN은 멤버쉽 함수로써 기존 RBFNN에서 가우시안이나 타원형 형태의 특정 RBF를 사용하는 구조와 달리 Fuzzy C-Means clustering 알고리즘에서 사용하는 거리에 기한 멤버쉽 함수를 사용하여 전반부의 공간 분할 및 활성화 레벨을 결정하는 구조이다. 본 논문에서는 데이터의 밀집도에 기반을 두어 클러스터링을 하는 Subtractive clustering 알고리즘을 사용하여 퍼지 규칙의 수와 같은 의미를 갖는 분할할 입력공간의 수와 분할된 입력공간의 중심값을 동정하며, Least Square Estimator (LSE) 알고리즘을 사용하여 후반부 다항식의 계수를 추정 한다.

  • PDF

A Study of an Extended Fuzzy Cluster Analysis on Special Shape Data (특별한 형태의 자료에 대한 확장된 Fuzzy 집락분석방법에 관한 연구)

  • 임대혁
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.6
    • /
    • pp.36-41
    • /
    • 2002
  • We consider the Fuzzy clustering which is devised for partitioning a set of objects into a certain number of groups by assigning the membership probabilities to each object. The researches carried out in this field before show that the Fuzzy clustering concept is involved so much that for a certain set of data, the main purpose of the clustering cannot be attained as desired. Thus we propose a new objective function, named as Fuzzy-Entroppy Function in order to satisfy the main motivation of the clustering which is classifying the data clearly. Also we suggest Mean Field Annealing Algorithm as an optimization algorithm rather than the ISODATA used traditionally in this field since the objective function is changed. we show the Mean Field Annealing Algorithm works pretty well not only for the new objective function but also for the classical Fuzzy objective function by indicating that the local minimum problem resulted from the ISODATA can be improved.

Incremental Fuzzy Clustering Based on a Fuzzy Scatter Matrix

  • Liu, Yongli;Wang, Hengda;Duan, Tianyi;Chen, Jingli;Chao, Hao
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.359-373
    • /
    • 2019
  • For clustering large-scale data, which cannot be loaded into memory entirely, incremental clustering algorithms are very popular. Usually, these algorithms only concern the within-cluster compactness and ignore the between-cluster separation. In this paper, we propose two incremental fuzzy compactness and separation (FCS) clustering algorithms, Single-Pass FCS (SPFCS) and Online FCS (OFCS), based on a fuzzy scatter matrix. Firstly, we introduce two incremental clustering methods called single-pass and online fuzzy C-means algorithms. Then, we combine these two methods separately with the weighted fuzzy C-means algorithm, so that they can be applied to the FCS algorithm. Afterwards, we optimize the within-cluster matrix and betweencluster matrix simultaneously to obtain the minimum within-cluster distance and maximum between-cluster distance. Finally, large-scale datasets can be well clustered within limited memory. We implemented experiments on some artificial datasets and real datasets separately. And experimental results show that, compared with SPFCM and OFCM, our SPFCS and OFCS are more robust to the value of fuzzy index m and noise.