• Title/Summary/Keyword: fuzzy-c means

Search Result 449, Processing Time 0.031 seconds

HTR(Hard-To-Reach) Code Registration methods and Fuzzy controls using network signaling information in ATM systems (ATM시스템에서 네트웨크 시그날링 정보를 이용한 HTR(Hard-To-Reach) 등록방법 및 퍼지제어 방법)

  • Chul Soo, Kim;Jung tae, Lee
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.9
    • /
    • pp.55-65
    • /
    • 2004
  • ATM was recommended by the ITU and ATM Forum as a means of transportation for B-ISDN. At this time, due to the comprehensive mature of ATM protocol, ATM has been adapted as the backbone system for carrying Internet traffi $c^{[1,2,3,4]}$. But major conceptsregarding the ATN protocol will be used on future technology. This paper presents preventive congestion control mechanisms for detecting HTR(Hard-To Reach) code in ATM systems, in particular for an improved HTR call registration method using network signaling information will discussed. In high speed circuit switching system environments, a fast HTR control mechanism is necessary. We present research results for improving HTR call registration and control methods using network signaling information and fuzzy control mechanisms. We concluded that it showed fast congestion avoidance mechanisms with a fewer system load maximized the efficiency of network resources by restricting ineffective machine attempts.

Design of pRBFNN Based on Interval Type-2 Fuzzy Set (Interval Type-2 퍼지 집합 기반의 pRBFNN 설계)

  • Kim, In-Jae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1871_1872
    • /
    • 2009
  • 본 논문 에서는 Type-2 퍼지 논리 시스템을 설계하고, 불확실한 정보를 갖는 입력 데이터에 대하여 Type-1 퍼지 논리 시스템과 성능을 비교한다. Type-1 퍼지 논리 시스템은 외부 잡음에 민감한 단점을 가지고 있는 반면, Type-2 퍼지 논리 시스템은 불확실한 정보를 잘 표현 할 수 있다. 따라서 Type-2 퍼지 논리 시스템을 이용하여 이러한 단점을 극복하고자 2가지의 모델을 설계한다. 첫 번째 모델은 규칙의 전 후반부가 Type-1 퍼지 집합으로 구성된 Type-1 퍼지 논리 시스템을 설계 한다. 두 번째는 규칙 전 후반부에 Type-2 퍼지 집합으로 구성된 Type-2 퍼지 논리 시스템을 설계한다. 여기서 규칙 전반부의 입력 공간 분할 및 FOU(Footprint Of Uncertainty)형성에는 FCM(Fuzzy C_Means) clustering 방법을 사용하고, 입자 군집 최적화(Particle Swarm Optimization) 알고리즘을 사용하여 최적의 파라미터를 설계한다. 본 논문 에서는 또한 입력 데이터에 인위적으로 가하는 노이즈에 따른 각각 모델의 성능을 비교한다. 마지막으로 비선형 모델 평가에 주로 사용되는 NOx 데이터를 제안된 모델에 적용하고, 실험을 통하여 노이즈가 첨가되고, 불확실한 정보를 다루기에 Type-1 퍼지 논리 시스템 보다 Type-2 퍼지 논리 시스템이 효율적이라는 것을 보인다.

  • PDF

A Study on the Detection of Pulmonary Blood Vessel Using Pyramid Images and Fuzzy Theory (피라미드 영상과 퍼지이론을 이용한 폐부 혈관의 검출에 관한 연구)

  • Hwang, Jun-Hyun;Park, Kwang-Suk;Min, Byoung-Gu
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.99-106
    • /
    • 1991
  • For the automatic detection of pulmonary blood vessels, a new algorithm is proposed using the fact that human recognizes a pattern orderly according to their size. This method simulates the human recognition process by the pyramid images. For the detection of vessels using multilevel image, large and wtde ones are detected from the most compressed level, followed by the detection of small and narrow ones from the less compressed images with FCM(fuzzy c means) clustering algorithm which classifies similar data into a group. As the proposed algorithm detects blood vessels orderly according to their size, there is no need to consider the variation of parameters and the branch points which should be considered in other detection algirithms. In the detection of patterns whose size changes successively like pulmonary blood vessels, this proposed algorithm can be properly applied

  • PDF

Design of Heavy Rain Advisory Decision Model Based on Optimized RBFNNs Using KLAPS Reanalysis Data (KLAPS 재분석 자료를 이용한 진화최적화 RBFNNs 기반 호우특보 판별 모델 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Lee, Yong-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.473-478
    • /
    • 2013
  • In this paper, we develop the Heavy Rain Advisory Decision Model based on intelligent neuro-fuzzy algorithm RBFNNs by using KLAPS(Korea Local Analysis and Prediction System) Reanalysis data. the prediction ability of existing heavy rainfall forecasting systems is usually affected by the processing techniques of meteorological data. In this study, we introduce the heavy rain forecast method using the pre-processing techniques of meteorological data are in order to improve these drawbacks of conventional system. The pre-processing techniques of meteorological data are designed by using point conversion, cumulative precipitation generation, time series data processing and heavy rain warning extraction methods based on KLAPS data. Finally, the proposed system forecasts cumulative rainfall for six hours after future t(t=1,2,3) hours and offers information to determine heavy rain advisory. The essential parameters of the proposed model such as polynomial order, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution.

Systematic Classification of Container Ports in European Union Countries (유럽지역 컨테이너항만의 체계적 분류에 관한 연구)

  • Yeo, Gi-Tae
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.3
    • /
    • pp.382-391
    • /
    • 2006
  • The aim of this research is to classify the 21 container ports in European Union countries using components of competition and co-operation under the well-known methodology, FCM(Fuzzy C-Mean). Through this approach, those 21 ports were classified into six poet groups, and also membership degree of each port within the six port groups were suggested. As results, Rotterdam which positioned Group C, is turned out the most competitive independent port. The next competitive group is found out as Group B which consisted of port of Hamburg and Antwerp. In another point of view, Group A and B which have six and four ports respectively, were needed to search the co-operation strategies. Finally, the lowest competitive port groups in the targeted area were shown as Group D and F.

  • PDF

Color-Texture Image Watermarking Algorithm Based on Texture Analysis (텍스처 분석 기반 칼라 텍스처 이미지 워터마킹 알고리즘)

  • Kang, Myeongsu;Nguyen, Truc Kim Thi;Nguyen, Dinh Van;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.35-43
    • /
    • 2013
  • As texture images have become prevalent throughout a variety of industrial applications, copyright protection of these images has become important issues. For this reason, this paper proposes a color-texture image watermarking algorithm utilizing texture properties inherent in the image. The proposed algorithm selects suitable blocks to embed a watermark using the energy and homogeneity properties of the grey level co-occurrence matrices as inputs for the fuzzy c-means clustering algorithm. To embed the watermark, we first perform a discrete wavelet transform (DWT) on the selected blocks and choose one of DWT subbands. Then, we embed the watermark into discrete cosine transformed blocks with a gain factor. In this study, we also explore the effects of the DWT subbands and gain factors with respect to the imperceptibility and robustness against various watermarking attacks. Experimental results show that the proposed algorithm achieves higher peak signal-to-noise ratio values (47.66 dB to 48.04 dB) and lower M-SVD values (8.84 to 15.6) when we embedded a watermark into the HH band with a gain factor of 42, which means the proposed algorithm is good enough in terms of imperceptibility. In addition, the proposed algorithm guarantees robustness against various image processing attacks, such as noise addition, filtering, cropping, and JPEG compression yielding higher normalized correlation values (0.7193 to 1).

An Efficient Clustering Algorithm based on Heuristic Evolution (휴리스틱 진화에 기반한 효율적 클러스터링 알고리즘)

  • Ryu, Joung-Woo;Kang, Myung-Ku;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.80-90
    • /
    • 2002
  • Clustering is a useful technique for grouping data points such that points within a single group/cluster have similar characteristics. Many clustering algorithms have been developed and used in engineering applications including pattern recognition and image processing etc. Recently, it has drawn increasing attention as one of important techniques in data mining. However, clustering algorithms such as K-means and Fuzzy C-means suffer from difficulties. Those are the needs to determine the number of clusters apriori and the clustering results depending on the initial set of clusters which fails to gain desirable results. In this paper, we propose a new clustering algorithm, which solves mentioned problems. In our method we use evolutionary algorithm to solve the local optima problem that clustering converges to an undesirable state starting with an inappropriate set of clusters. We also adopt a new measure that represents how well data are clustered. The measure is determined in terms of both intra-cluster dispersion and inter-cluster separability. Using the measure, in our method the number of clusters is automatically determined as the result of optimization process. And also, we combine heuristic that is problem-specific knowledge with a evolutionary algorithm to speed evolutionary algorithm search. We have experimented our algorithm with several sets of multi-dimensional data and it has been shown that one algorithm outperforms the existing algorithms.

Damage analysis of carbon nanofiber modified flax fiber composite by acoustic emission

  • Li, Dongsheng;Shao, Junbo;Ou, Jinping;Wang, Yanlei
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.127-136
    • /
    • 2017
  • Fiber reinforced polymer (FRP) has received widespread attention in the field of civil engineering because of its superior durability and corrosion resistance. This article presents the damage mechanisms of a novelty composite called carbon nanofiber modified flax fiber polymer (CNF-modified FFRP). The ability of acoustic emission (AE) to detect damage evolution for different configurations of specimens under uniaxial tension was examined, and some useful AE characteristic parameters were obtained. Test results shows that the mechanical properties of modified composites are associated with the CNF content and the evenness of CNF dispersed in the epoxy matrix. Various damage mechanisms was established by means of scanning electron microscope images. The fuzzy c-means clustering were proposed to classify AE events into groups representing different generation mechanisms. The classifiers are constructed using the traditional AE features -- six parameters from each burst. Amplitude and peak-frequency were selected as the best cluster-definition features from these AE parameters. After comprehensive comparison, a correlation between these AE events classes and the damage mechanisms observed was proposed.

A Modeling of XML Document Preserving Object-Oriented Concepts

  • Kim, Chang Suk;Kim, Dae Su;Son, Dong Cheul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.129-134
    • /
    • 2004
  • XML is the new universal format for structured documents and data on the World Wide Web. As the Web becomes a major means of disseminating and sharing information and as the amount of XML data increases substantially, there are increased needs to manage and design such XML document in a novel yet efficient way. Moreover a demand of XML Schema(W3C XML Schema Spec.) that verifies XML document becomes increasing recently. However, XML Schema has a weak point for design because of its complication despite of various data and abundant expressiveness. Thus, it is difficult to design a complex document reflecting the usability, global and local facility and ability of expansion. This paper shows a simple way of modeling for XML document using a fundamental means for database design, the Entity-Relationship model. The design from the Entity-Relationship model to XML Schema can not be directly on account of discordance between the two models. So we present some algorithms to generate XML Schema from the Entity-Relationship model. The algorithms produce XML Schema codes using a hierarchical view representation. An important objective of this modeling is to preserve XML Schema's object-oriented concepts such as reusability, global and local ability. In addition to, implementation procedure and evaluation of the proposed design method are described.

A Study on Heavy Rainfall Guidance Realized with the Aid of Neuro-Fuzzy and SVR Algorithm Using AWS Data (AWS자료 기반 SVR과 뉴로-퍼지 알고리즘 구현 호우주의보 가이던스 연구)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Yong-Hyuk;Lee, Yong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.526-533
    • /
    • 2014
  • In this study, we introduce design methodology to develop a guidance for issuing heavy rainfall warning by using both RBFNNs(Radial basis function neural networks) and SVR(Support vector regression) model, and then carry out the comparative studies between two pattern classifiers. Individual classifiers are designed as architecture realized with the aid of optimization and pre-processing algorithm. Because the predictive performance of the existing heavy rainfall forecast system is commonly affected from diverse processing techniques of meteorological data, under-sampling method as the pre-processing method of input data is used, and also data discretization and feature extraction method for SVR and FCM clustering and PSO method for RBFNNs are exploited respectively. The observed data, AWS(Automatic weather wtation), supplied from KMA(korea meteorological administration), is used for training and testing of the proposed classifiers. The proposed classifiers offer the related information to issue a heavy rain warning in advance before 1 to 3 hours by using the selected meteorological data and the cumulated precipitation amount accumulated for 1 to 12 hours from AWS data. For performance evaluation of each classifier, ETS(Equitable Threat Score) method is used as standard verification method for predictive ability. Through the comparative studies of two classifiers, neuro-fuzzy method is effectively used for improved performance and to show stable predictive result of guidance to issue heavy rainfall warning.