• Title/Summary/Keyword: fuzzy-c means

Search Result 449, Processing Time 0.031 seconds

The Characteristic of MPPT Control for Photovoltaic System by Temperature Compensation Effect using Fuzzy Controller (퍼지제어기에 의한 온도보상효과를 고려한 태양광 발전 시스템의 MPPT제어 특성)

  • Kang, Byung-Bog;Cha, In-Su;Yu, Gwon-Jong;Jung, Myung-Woong;Song, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.238-241
    • /
    • 1995
  • In this paper, a new Maximum Power Point Tractor (MPPT) using Fuzzy Controller is proposed to improve energy convention efficiency. Temperature compensation effect means the photovoltaic voltage is change in condition irradiation, temperature and etc. Fuzzy algorithm is applied to control Boost MPPT converter by Temperature compensation effect. Temperature compensation range is $-40\sim+100^{\circ}C$.

  • PDF

Computational Vision and Fuzzy Systems Laboratory (무기본형 기초의 퍼지 클러스터링에 대한 빠른 접근)

  • Hwang, Chul;Lee, Jung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.1-4
    • /
    • 2000
  • 본 논문에서는 패턴 데이터(pattern data) 의 분할(partitioning)위하여, 계산량의 단축할 수 있는 효과적인 퍼지 클러스터링 알고리즘(fuzzy clustering algorithm)을 제시한다. 본 논문에 제시된 알고리즘은 두 단계로 수행된다. 첫번째 단계는, 개선된 FCM(Fuzzy C-means)방법에 의해 입력 패턴틀에 대해, 단지 두 번의 반복 수행과정만을 거쳐, 충분히 많은 개수의 초기 클러스터 중 심(center)를 결정한다. 다음 단계에서는, 본 논문에 제시될 클러스터 합치기 알고리즘(cluster merging algorithm)을 통해 각 클러스터의 부피(volume)에 따라 클러스터들을 합치는 과정(merging process)을 하게 된다. 결과적으로 일정한 제한된 개수의 무정형(amorphous)의 클러스터틀의 효과적으로 표현될 수 있다. 본 논문의 마지막에 제시될 실험 결과들은 제시된 방법의 유용성을 보여줄 것이다.

  • PDF

Intelligent Modeling of User Behavior based on FCM Quantization for Smart home (FCM 이산화를 이용한 스마트 홈에서 행동 모델링)

  • Chung, Woo-Yong;Lee, Jae-Hun;Yon, Suk-Hyun;Cho, Young-Wan;Kim, Eun-Tai
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.542-546
    • /
    • 2007
  • In the vision of ubiquitous computing environment, smart objects would communicate each other and provide many kinds of information about user and their surroundings in the home. This information enables smart objects to recognize context and to provide active and convenient services to the customers. However in most cases, context-aware services are available only with expert systems. In this paper, we present generalized activity recognition application in the smart home based on a naive Bayesian network(BN) and fuzzy clustering. We quantize continuous sensor data with fuzzy c-means clustering to simplify and reduce BN's conditional probability table size. And we apply mutual information to learn the BN structure efficiently. We show that this system can recognize user activities about 80% accuracy in the web based virtual smart home.

Development of Economical Run Model for High Speed Rolling stock 350 experimental (한국형 고속열차 경계운전 모형 개발)

  • Lee, Tae-Hyung;Park, Choon-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.238-240
    • /
    • 2005
  • The Optimization has been performed to search an economical running pattern in the view point of trip time and energy consumption. Fuzzy control model have been applied to build the meta-model. To identify the structure and its parameters of a fuzzy model, fuzzy c-means clustering method and differential evolutionary scheme are utilized, respectively. As a result, two meta-models for trip time and energy consumption were constructed. The optimization to search an economical running pattern was achieved by differential evolutionary scheme. The result shows that the proposed methodology is very efficient and conveniently applicable to the operation of railway system.

  • PDF

Context-Aware Security Service using FCM Clustering and Multivariate Fuzzy Decision Tree (FCM 클러스터링과 다변량 퍼지결정트리를 이용한 상황인식 보안 서비스)

  • Yang, Seokhwan;Chung, Mokdong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1527-1530
    • /
    • 2009
  • 유비쿼터스 환경의 확산에 따른 다양한 보안문제의 발생은 센서의 정보를 이용한 상황인식 보안 서비스의 필요성을 증대시키고 있다. 본 논문에서는 FCM (Fuzzy C-Means) 클러스터링과 다변량 퍼지 결정트리 (Multivariate Fuzzy Decision Tree)를 이용하여 센서의 정보를 분류함으로써 사용자의 상황을 인식하고, 사용자가 처한 상황에 따라 다양한 수준의 보안기술을 유연하게 적용할 수 있는 상황인식 보안 서비스를 제안한다. 제안 모델은 기존에 많이 연구되어 오던 고정된 규칙을 기반으로 하는 RBAC(Role-Based Access Control)계열의 모델보다 더욱 유연하고 적합한 결과를 보여주고 있다.

Feature Selection of Fuzzy Pattern Classifier by using Fuzzy Mapping (퍼지 매핑을 이용한 퍼지 패턴 분류기의 Feature Selection)

  • Roh, Seok-Beom;Kim, Yong Soo;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.646-650
    • /
    • 2014
  • In this paper, in order to avoid the deterioration of the pattern classification performance which results from the curse of dimensionality, we propose a new feature selection method. The newly proposed feature selection method is based on Fuzzy C-Means clustering algorithm which analyzes the data points to divide them into several clusters and the concept of a function with fuzzy numbers. When it comes to the concept of a function where independent variables are fuzzy numbers and a dependent variable is a label of class, a fuzzy number should be related to the only one class label. Therefore, a good feature is a independent variable of a function with fuzzy numbers. Under this assumption, we calculate the goodness of each feature to pattern classification problem. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

Granular Bidirectional and Multidirectional Associative Memories: Towards a Collaborative Buildup of Granular Mappings

  • Pedrycz, Witold
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.435-447
    • /
    • 2017
  • Associative and bidirectional associative memories are examples of associative structures studied intensively in the literature. The underlying idea is to realize associative mapping so that the recall processes (one-directional and bidirectional ones) are realized with minimal recall errors. Associative and fuzzy associative memories have been studied in numerous areas yielding efficient applications for image recall and enhancements and fuzzy controllers, which can be regarded as one-directional associative memories. In this study, we revisit and augment the concept of associative memories by offering some new design insights where the corresponding mappings are realized on the basis of a related collection of landmarks (prototypes) over which an associative mapping becomes spanned. In light of the bidirectional character of mappings, we have developed an augmentation of the existing fuzzy clustering (fuzzy c-means, FCM) in the form of a so-called collaborative fuzzy clustering. Here, an interaction in the formation of prototypes is optimized so that the bidirectional recall errors can be minimized. Furthermore, we generalized the mapping into its granular version in which numeric prototypes that are formed through the clustering process are made granular so that the quality of the recall can be quantified. We propose several scenarios in which the allocation of information granularity is aimed at the optimization of the characteristics of recalled results (information granules) that are quantified in terms of coverage and specificity. We also introduce various architectural augmentations of the associative structures.

A Cluster Validity Index Using Overlap and Separation Measures Between Fuzzy Clusters (클러스터간 중첩성과 분리성을 이용한 퍼지 분할의 평가 기법)

  • Kim, Dae-Won;Lee, Kwang-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.455-460
    • /
    • 2003
  • A new cluster validity index is proposed that determines the optimal partition and optimal number of clusters for fuzzy partitions obtained from the fuzzy c-means algorithm. The proposed validity index exploits an overlap measure and a separation measure between clusters. The overlap measure is obtained by computing an inter-cluster overlap. The separation measure is obtained by computing a distance between fuzzy clusters. A good fuzzy partition is expected to have a low degree of overlap and a larger separation distance. Testing of the proposed index and nine previously formulated indexes on well-known data sets showed the superior effectiveness and reliability of the proposed index in comparison to other indexes.

Image Segmentation Based on the Fuzzy Clustering Algorithm using Average Intracluster Distance (평균내부거리를 적용한 퍼지 클러스터링 알고리즘에 의한 영상분할)

  • You, Hyu-Jai;Ahn, Kang-Sik;Cho, Seok-Je
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.9
    • /
    • pp.3029-3036
    • /
    • 2000
  • Image segmentation is one of the important processes in the image information extraction for computer vision systems. The fuzzy clustering methods have been extensively used in the image segmentation because it extracts feature information of the region. Most of fuzzy clustering methods have used the Fuzzy C-means(FCM) algorithm. This algorithm can be misclassified about the different size of cluster because the degree of membership depends on highly the distance between data and the centroids of the clusters. This paper proposes a fuzzy clustering algorithm using the Average Intracluster Distance that classifies data uniformly without regard to the size of data sets. The Average Intracluster Distance takes an average of the vector set belong to each cluster and increases in exact proportion to its size and density. The experimental results demonstrate that the proposed approach has the g

  • PDF

Improved Fuzzy Clusteirng (개선된 퍼지 클러스터링)

  • Kim Sung-Suk;Kim Sung-Soo;Ryu Jeong-Woong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • In this paper, we propose a new fuzzy clustering scheme that optimizes the initial structure and the parameters to improve the performance of a intelligent systems. The proposed method keeps the good properties of clustering, and improves the total systems' performance at the same time, Especially, the proposed algorithm not only keeps robust to change threshold value in the optimization process, but also improves the performance of a system through the process of the self-organizing and the converging intelligent systems in its structure of cluster. In experiments, the superiority of the proposed scheme is presented by comparing its performance with other methods.