• 제목/요약/키워드: fuzzy-c means

검색결과 449건 처리시간 0.028초

생물학적 후각 시스템을 모방한 대규모 가스 센서 어레이에서 코사인 유사도와 퍼지 클러스터링을 이용한 중복도 제거 방법 (The Redundancy Reduction Using Fuzzy C-means Clustering and Cosine Similarity on a Very Large Gas Sensor Array for Mimicking Biological Olfaction)

  • 김정도;김정주;박성대;변형기;;임승주
    • 센서학회지
    • /
    • 제21권1호
    • /
    • pp.59-67
    • /
    • 2012
  • It was reported that the latest sensor technology allow an 65536 conductive polymer sensor array to be made with broad but overlapping selectivity to different families of chemicals emulating the characteristics found in biological olfaction. However, the supernumerary redundancy always accompanies great error and risk as well as an inordinate amount of computation time and local minima in signal processing, e.g. neural networks. In this paper, we propose a new method to reduce the number of sensor for analysis by reducing redundancy between sensors and by removing unstable sensors using the cosine similarity method and to decide on representative sensor using FCM(Fuzzy C-Means) algorithm. The representative sensors can be just used in analyzing. And, we introduce DWT(Discrete Wavelet Transform) for data compression in the time domain as preprocessing. Throughout experimental trials, we have done a comparative analysis between gas sensor data with and without reduced redundancy. The possibility and superiority of the proposed methods are confirmed through experiments.

퍼지 클러스터 필터와 가중화 된 벡터 $\alpha$-trimmed 평균 필터를 이용한 칼라 영상처리 (Color Image Processing using Fuzzy Cluster Filters and Weighted Vector $\alpha$-trimmed Mean Filter)

  • 엄경배;이준환
    • 한국통신학회논문지
    • /
    • 제24권9B호
    • /
    • pp.1731-1741
    • /
    • 1999
  • 칼라 영상은 센서 잡음이나 채널 전송 에러에 의해 생기는 잡음에 의해 자주 오염되어진다. 이러한 칼라 잡음을 제거하기 위해 벡터 미디안, 벡터 $\alpha$-trimmed 평균 필터 등 여러 형태의 필터들이 개발되어져 왔다. 본 논문에서 제안된 클러스터 필터는 잡음에 오염된 환경 하에서 강건한 소속함수 값을 얻을 수 있는 가능적 c-mean 클러스터링 방법을 이용하였다. 또한, 본 논문에서는 혼합된 잡음에서 우수한 벡터 $\alpha$-trimmed 평균 필터를 개선하여, 원도우내의 화소중 중심에 위치한 화소에는 더 가중치를 부여하여 가중화 된 평균 필터링을 수행하는 가중화 벡터$\alpha$-trimmed 평균 필터를 제안하였다. 본 논문에서는 칼라 잡음이 발생한 영상에서 제안된 필터들의 성능을 평가하기 위해 칼라 잡음 발생기를 구현하였으며, 실험 결과는 NCD 척도 및 관측자의 시각에 의해 평가되었다. 실험 결과 제안된 퍼지 클러스터 필터는 NCD 관점에서 기존의 필터들에 비해 혼합된 잡음에서 우수한 성능을 보였고, 제안된 가중화된 벡터 $\alpha$-trimmed 평균 필터는 벡터 $\alpha$-trimmed 평균 필터에 비해 어떠한 잡음 하에서도 양호한 결과를 보였다.

  • PDF

Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.101-110
    • /
    • 2003
  • This paper introduces an identification method for nonlinear models in the form of rule-based Fuzzy-Neural Networks (FNN). In this study, the development of the rule-based fuzzy neural networks focuses on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The FNN modeling and identification environment realizes parameter identification through synergistic usage of clustering techniques, genetic optimization and a complex search method. We use a HCM (Hard C-Means) clustering algorithm to determine initial apexes of the membership functions of the information granules used in this fuzzy model. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are then adjusted using the identification algorithm of a GA hybrid scheme. The proposed GA hybrid scheme effectively combines the GA with the improved com-plex method to guarantee both global optimization and local convergence. An aggregate objective function (performance index) with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. According to the selection and adjustment of the weighting factor of this objective function, we reveal how to design a model having sound approximation and generalization abilities. The proposed model is experimented with using several time series data (gas furnace, sewage treatment process, and NOx emission process data from gas turbine power plants).

공작기계 지능화를 위한 다중 감시 시스템의 개발-드릴가공에의 적용- (Development of a Multiple Monitioring System for Intelligence of a Machine Tool -Application to Drilling Process-)

  • 김화영;안중환
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.142-151
    • /
    • 1993
  • An intelligent mulitiple monitoring system to monitor tool/machining states synthetically was proposed and developed. It consists of 2 fundamental subsystems : the multiple sensor detection unit and the intellignet integrated diagnosis unit. Three signals, that is, spindle motor current, Z-axis motor current, and machining sound were adopted to detect tool/machining states more reliably. Based on the multiple sensor information, the diagnosis unit judges either tool breakage or degree of tool wear state using fuzzy reasoning. Tool breakage is diagnosed by the level of spindle/z-axis motor current. Tool wear is diagnosed by both the result of fuzzy pattern recognition for motor currents and the result of pattern matching for machining sound. Fuzzy c-means algorithm was used for fuzzy pattern recognition. Experiments carried out for drill operation in the machining center have shown that the developed system monitors abnormal drill/states drilling very reliably.

  • PDF

축별 분할된 PSO-FCM을 이용한 외란 감소방안: 함정용 레이더의 위상변화 적용 (The Reduction Methodology of External Noise with Segmentalized PSO-FCM: Its Application to Phased Conversion of the Radar System on Board)

  • 손현승;박진배;주영훈
    • 제어로봇시스템학회논문지
    • /
    • 제18권7호
    • /
    • pp.638-643
    • /
    • 2012
  • This paper presents an intelligent reduction method for external noise. The main idea comes from PSO-FCM (Particle Swam Optimization Fused fuzzy C-Means) clustering. The data of the target is transformed from the antenna coordinates to the vessel one and to the system coordinates. In the conversion, the overall noises hinder observer to get the exact position and velocity of the maneuvering target. While the filter is used for tracking system, unexpected acceleration becomes the main factor which makes the uncertainty. In this paper, the tracking efficiency is improved with the PSO-FCM and the compensation methodology. The acceleration is approximated from the external noise splitted by the proposed clustering method. After extracting the approximated acceleration, the rest in the noise is filtered by the filter and the compensation is added to after that. Proposed tracking method is applicable to the linear model and nonlinear one together. Also, it can do to the on-line system. Finally, some examples are provided to examine the reliability of the proposed method.

FCM 클러스터링 기반 비선형 기동표적의 외란분석 알고리즘 (External Noise Analysis Algorithm based on FCM Clustering for Nonlinear Maneuvering Target)

  • 손현승;박진배;주영훈
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2346-2351
    • /
    • 2011
  • This paper presents the intelligent external noise analysis method for nonlinear maneuvering target. After recognizing maneuvering pattern of the target by the proposed method, we track the state of the target. The external noise can be divided into mere noise and acceleration using only the measurement. divided noise passes through the filtering step and acceleration is punched into dynamic model to compensate expected states. The acceleration is the most deterministic factor to the maneuvering. By dividing, approximating, and compensating the acceleration, we can reduce the tracking error effectively. We use the fuzzy c-means (FCM) clustering as the method to divide external noise. FCM can separate the acceleration from the noise without criteria. It makes the criteria with the data made by measurement at every sampling time. So it can show the adaptive tracking result. The proposed method proceeds the tracking target simultaneously with the learning process. Thus it can apply to the online system. The proposed method shows the remarkable tracking result on the linear and nonlinear maneuvering. Finally, some examples are provided to show the feasibility of the proposed algorithm.

쾌 및 각성차원 기반 얼굴 표정인식 (Facial expression recognition based on pleasure and arousal dimensions)

  • 신영숙;최광남
    • 인지과학
    • /
    • 제14권4호
    • /
    • pp.33-42
    • /
    • 2003
  • 본 논문은 내적상태의 차원모형을 기반으로 한 얼굴 표정인식을 위한 새로운 시스템을 제시한다. 얼굴표정 정보는 3단계로 추출된다. 1단계에서는 Gabor 웨이브렛 표상이 얼굴 요소들의 경계선을 추출한다. 2단계에서는 중립얼굴상에서 얼굴표정의 성긴 특징들이 FCM 군집화 알고리즘을 사용하여 추출된다. 3단계에서는 표정영상에서 동적인 모델을 사용하여 성긴 특징들이 추출된다. 마지막으로 다층 퍼셉트론을 사용하여 내적상태의 차원모델에 기반한 얼굴표정 인식을 보인다. 정서의 이차원 구조는 기본 정서와 관련된 얼굴표정의 인식 뿐만 아니라 다양한 정서의 표정들로 인식할 수 있음을 제시한다.

  • PDF

한강 유역에서의 강우 지역빈도 해석 방법의 비교 연구 (Comparative Study of Regional Frequency Analysis Methods of Rainfall in Han River Basin)

  • 엄명진;임승택;남우성;조원철;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1072-1076
    • /
    • 2008
  • 본 연구에서는 한강유역 109개 지점의 강우관측소에서 관측된 지속기간별 연최대강우량을 기본으로 각 지속기간별 L-모멘트값을 산정하고, 한강유역에 적합한 빈도해석기법을 정의하기 위하여 지역구분을 실시하였다. 지역구분을 위한 군집분석을 수행하기 위하여 각 지점별 기상학적 인자와 지형학적 인자를 변수로 사용하였다. 군집분석 기법인 Ward, 평균연결법, Fuzzy-c means, Two-Step방법을 이용하여 지역구분을 실시하였다. GIS를 이용하여 각 방법들을 이용하여 군집된 결과를 도시한 결과 Fuzzy-c means방법으로 구분된 지역구분이 적합한 것으로 나타났다. 또한 구분된 지역의 동질성 여부를 판단하고 적정 분포형을 선정하였으며 지점빈도해석 및 지역빈도해석을 통하여 빈도별 확률 수문량을 산정하였다. 산정된 결과의 정확도 알아보기 위해 모의발생을 시킨 후, 각 기법별로 산정된 상대 평균 제곱근 오차(Relative Root Mean Square Error, RRMSE)를 비교 분석한 결과 대체적으로 지수홍수법과 계층적 방법이 낮은 RRMSE를 나타냈다. 따라서 한강유역에서는 지수홍수법과 계층적 방법을 적용한 지역빈도해석이 적합한 것으로 판단된다.

  • PDF

조건부 FCM과 방사기저함수네트웍을 이용한 유도전동기 고장 검출 (Detection and Diagnosis of Induction Motor Using Conditional FCM and Radial Basis Function Network)

  • 김승석;이대종;박장환;유정웅;전명근
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.878-882
    • /
    • 2004
  • 본 논문에서는 유도전동기 고장진단을 위하여 계층적인 하이브리드 뉴럴네트웍을 제안하였다. 시스템의 입출력 데이터에 근거하여 패턴을 분류할 때 단계별 변환 및 분류 기법을 이용하였다. 제안된 방법에서는 실험에 측정된 전류값을 주기별로 주성분분석(PCA) 기법을 이용하여 입력차원을 축소한 후 이를 조건부 FCM으로 방사기저함수의 초기치를 최적화하는데 사용하였다. 이는 주성분분석이 가지는 특성을 이용하여 데이터의 특징을 나누었으며 이를 뉴럴네트웍의 학습 기능을 이용하여 고장검출 모델의 최종 성능을 개선하는 것이다. 이를 실제 계측된 유도전동기 데이터를 이용하여 실험한 결과 제안된 방법의 성능이 기존의 방법들에 비하여 우수함을 알 수 있었다.

Visual and Quantitative Analysis of Different Tastes in liquids with Fuzzy C-means and Principal Component Analysis Using Electronic Tongue System

  • Kim, Joeng-Do;Kim, Dong-Jin;Byun, Hyung-Gi;Ham, Yu-Kyung;Jung, Woo-Suk;Choo, Dae-Won
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.133-137
    • /
    • 2005
  • In this paper, we investigate visual and quantitative analysis of different tastes in the liquids using multi-array chemical sensor (MACS) based on the ion-selective electrodes (ISEs), which is so called the electronic tongue (E-Tongue) system. We apply the Fuzzy C-means (FCM) algorithm combined with Principal Component Analysis (PCA), which can be used to reduce multi-dimensional data to two- or three-dimensional data, to classify visually data patterns detected by E-Tongue system. The proposed technique can be determined the cluster centers and membership grade of patterns through the unsupervised way. The membership grade of an unknown pattern, which does not shown previously, can be visually and analytically determined. Throughout the experimental trails, the E-tongue system combined with the proposed algorithms is demonstrated robust performance for visual and quantitative analysis for different tastes in the liquids.

  • PDF