• 제목/요약/키워드: fuzzy-c means

검색결과 449건 처리시간 0.022초

적응적 Multiple Kernels을 이용한 Interval Type-2 Possibilistic Fuzzy C-Means 방법 (A Novel Approach towards use of Adaptive Multiple Kernels in Interval Type-2 Possibilistic Fuzzy C-Means)

  • 주원희;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제24권5호
    • /
    • pp.529-535
    • /
    • 2014
  • 본 논문에서는 interval type-2 possibilistic fuzzy C-means(IT2PFCM) 클러스터링 방법에 multiple Gaussian kernels을 기반으로 한 possibilistic fuzzy C-means multiple kernels(PFCM-MK) 알고리즘을 결합하여 적응적인 하이브리드 클러스터링 방법인 multiple kernels interval type-2 possibilistic fuzzy C-means(IT2PFCM-MK) 방법을 제안 하였다. 일반적으로 possibilistic fuzzy C-means(PFCM) 알고리즘은 fuzzy C-means(FCM) 알고리즘의 단점인 노이즈 민감성 및 특이점 문제와 알고리즘 초기 클러스터의 Prototype에 따라 위치가 겹치는 문제를 해결하기 위해 제안 되었다. 하지만 이 방법 역시 퍼지화 파라미터 값에 따라 위와 같은 문제를 여전히 가지고 있기 때문에 이와 같은 문제를 보완하기 위해 interval type-2 퍼지 접근 방법을 이용 하는 interval type-2 possibilistic fuzzy C-means(IT2PFCM) 알고리즘을 제안 하였다. 또한 multiple kernels 함수를 interval type-2 possibilistic fuzzy C-means(IT2PFCM) 알고리즘에 적용하여 분류하기 복잡한 형태의 데이터와 노이즈가 있는 데이터에 대하여 보다 정확하고, 향상된 클러스터링을 수행할 수 있다.

Fuzzy c-means 알고리즘에서의 가변학습 가중치의 효과 (The Effect of Variable Learning Weights in Fuzzy c-means algorithm)

  • 박소희;조제황
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.109-112
    • /
    • 2001
  • 기존의 K-means 알고리즘은 학습벡터가 단일군집에 할당되는 방법이 crisp 이므로 다른 군집에 할당될 확률을 무시하게 된다. 따라서 군집화 작업과 관련하여 반복적인 코드북 설계 과정에서 각 학습벡터를 다중 군집으로 할당하는 Fuzzy c-means를 사용한다. 또한 Fuzzy c-means 알고리즘의 학습과정에서 구해지는 각 클래스 의 프로토타입에 가중치를 곱하여 다음 학습의 프로토타입으로 사용함으로써 Fuzzy c-means 알고리즘 적용 결과 얻어지는 코트북의 성능을 기존 알고리즘과 비교하여 개선된 Fuzzy c-means 알고리즘을 찾기 위한 근거를 마련한다.

  • PDF

차감 및 중력 fuzzy C-means 클러스터링을 이용한 칼라 영상 분할에 관한 연구 (Segmentation of Color Image by Subtractive and Gravity Fuzzy C-means Clustering)

  • 진영근;김태균
    • 전기전자학회논문지
    • /
    • 제1권1호
    • /
    • pp.93-100
    • /
    • 1997
  • 칼라 영상 분할의 한 방법으로 fuzzy C-means를 이용한 방법이 많이 연구되었으나, 이 방법은 클러스터의 개수가 정해져야 사용할 수 있는 방법이다. 분할해야 할 데이터가 많은 경우 예비 분할을 수행하여 예비 분할 되지 않는 데이터들에 대해서 상세 분할을 fuzzy C-means를 사용하여 분할 하나 예비 분할된 데이터의 클러스터 중심과 상세 분할로 만들어진 클러스터의 중심과는 연계성이 없어진다. 본 연구에서는 이것을 보완하기 위하여 차감 클러스터링을 사용하여 칼라 영상의 클러스터의 개수와 중심을 구한 후, 이것을 이용하여 영상을 예비 분할하고 중력을 가진 fuzzy C-means를 사용하여 분할되지 않은 나머지 부분과 클러스터의 중심을 최적화 시켜 분할하는 알고리듬을 제안한다. 제안된 방법의 정성적인 평가를 수행하여 본 논문에서 제시된 방법이 우수함을 보인다.

  • PDF

퍼지 kNN과 Conditional FCM을 이용한 퍼지 RBF의 설계 (Design of Radial Basis Function with the Aid of Fuzzy KNN and Conditional FCM)

  • 노석범;오성권
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1223-1229
    • /
    • 2009
  • The performance of Radial Basis Function Neural Networks depends on setting up the Radial Basis Functions over the input space which are the important design procedure of Radial Basis Function Neural Networks. The existing method to initialize the location of the radial basis functions over the input space is to use the conditional fuzzy C-means clustering. However, the researchers which are interested in the conditional fuzzy C-means clustering cannot get as good modeling performance as they expect because the conditional fuzzy C-means clustering cannot project the information which is extracted over the output space into the input space. To compensate the above mentioned drawback of the conditional fuzzy C-means clustering, we apply a fuzzy K-nearest neighbors approach to project the auxiliary information defined over the output space into the input space without lose of the information.

적응적인 초기치 설정을 이용한 Fast K-means 및 Frizzy-c-means 알고리즘 (A Fast K-means and Fuzzy-c-means Algorithms using Adaptively Initialization)

  • 강지혜;김성수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.516-524
    • /
    • 2004
  • 본 논문에서는 K-means 또는 Fuzzy-c-means 알고리즘에서 클러스터의 중심점을 찾는 과정 중 임의로 선택되는 초기값 선정의 문제를 해결하고, 기존의 단점을 보완하는 새로운 방안으로서 데이터의 분포의 통계적 특성에 따른 초기값 선정 방법을 제안하였다. 기존의 초기값 선정 방법은 초기값에 따라 클러스터링이 매우 민감한 변화를 가져와, 최종적으로 종종 원치 않는 방향으로 가는 문제점을 갖고 있다. 이러한 초기값 선정의 문제가 인지되어 왔지만, 그 문제의 해결방안이 실제적으로 모색된 경우는 없었다. 본 논문에서는 데이타의 통계적 특성을 이용한 초기값 선정 방법을 적용하여, 클러스터링이 형성되는 시간의 단축 및 원치 않는 결과가 생성되는 경우를 약화시켜 시스템의 향상을 가져왔고, 이러한 제안된 알고리즘의 우수성을 기존의 알고리즘과 비교를 통하여 나타내었다.

영상분할을 위한 밀도추정 바탕의 Fuzzy C-means 알고리즘 (A Density Estimation based Fuzzy C-means Algorithm for Image Segmentation)

  • 고정원;최병인;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.196-201
    • /
    • 2007
  • Fuzzy C-Means (FCM) 알고리즘은 probabilitic 멤버쉽을 사용하는 클러스터링 방법으로서 널리 쓰이고 있다. 하지만 이 방법은 노이즈에 대하여 민감한 성질을 가진다는 단점이 있다. 따라서 본 논문에서는 이러한 노이즈에 민감한 성질을 보완하기 위해서 데이터의 밀도추정을 이용하여 새로운 FCM 알고리즘을 제안한다. 본 논문에서 제안된 알고리즘은 FCM과 비슷한 성능의 클러스터링 수행이 가능하며, 노이즈가 포함된 데이터에서는 FCM보다 더 나은 성능을 보여준다.

Regularization을 이용한 Possibilistic Fuzzy C-means의 확장 (An Extension of Possibilistic Fuzzy C-means using Regularization)

  • 허경용;남궁영환;김성훈
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.43-50
    • /
    • 2010
  • Fuzzy c-means(FCM)와 possibilistic c-means(PCM)는 퍼지 클러스터링 영역에서 대표적인 두 가지 방법으로 많은 패턴 인식 문제들에 성공적으로 활용되어져 왔다. 하지만 이들 방법 역시 잡음 민감성과 중첩 클러스터 문제를 가지고 있다. 이들 문제점을 극복하기 위해, 최근 두 방법을 결합하려는 시도가 있어왔고, possibilistic fuzzy c-means(PFCM)는 FCM과 PCM을 목적 함수 단계에서 통합함으로써 두 방법이 가지는 문제점을 완화시키는 성공적인 결과를 보여주었다. 이 논문에서는 PFCM에 regularization을 도입함으로써 PFCM의 잡음 민감성을 한층 더 줄여줄 수 있는 향상된 PFCM을 소개한다. Regularization은 해공간을 평탄화 함으로써 잡음의 영향을 줄이는 대표적인 방법 중 하나이다. 제안한 방법은 PFCM의 장점과 더불어 regularization에 의해 잡음의 영향을 더욱 줄일 수 있으며, 이는 실험을 통해 확인할 수 있다.

Fuzzy c-Means Clustering Algorithm with Pseudo Mahalanobis Distances

  • ICHIHASHI, Hidetomo;OHUE, Masayuki;MIYOSHI, Tetsuya
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.148-152
    • /
    • 1998
  • Gustafson and Kessel proposed a modified fuzzy c-Means algorithm based of the Mahalanobis distance. Though the algorithm appears more natural through the use of a fuzzy covariance matrix, it needs to calculate determinants and inverses of the c-fuzzy scatter matrices. This paper proposes a fuzzy clustering algorithm using pseudo mahalanobis distance, which is more easy to use and flexible than the Gustafson and Kessel's fuzzy c-Means.

  • PDF

Improvement on Fuzzy C-Means Using Principal Component Analysis

  • Choi, Hang-Suk;Cha, Kyung-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.301-309
    • /
    • 2006
  • In this paper, we show the improved fuzzy c-means clustering method. To improve, we use the double clustering as principal component analysis from objects which is located on common region of more than two clusters. In addition we use the degree of membership (probability) of fuzzy c-means which is the advantage. From simulation result, we find some improvement of accuracy in data of the probability 0.7 exterior and interior of overlapped area.

  • PDF

노이즈에 강한 밀도를 이용한 Fuzzy C-means 클러스터링 알고리즘 (Noise resistant density based Fuzzy C-means Clustering Algorithm)

  • 고정원;최병인;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.211-214
    • /
    • 2006
  • Fuzzy C-Means(FCM) 알고리즘은 probabilitic 멤버쉽을 사용하는 클러스터링 방법으로서 널리 쓰이고 있다. 하지만 이 방법은 노이즈에 대하여 민감한 성질을 가진다는 단점이 있다. 따라서 본 논문에서는 이러한 노이즈에 민감한 성질을 보완하기 위해서 데이터의 밀도추정을 이용하여 새로운 FCM 알고리즘을 제안한다. 본 논문에서 제안된 알고리즘은 FCM과 비슷한 성능의 클러스터링 수행이 가능하며, 노이즈가 포함된 데이터에서는 FCM보다 더 나은 성능을 보여준다.

  • PDF