• Title/Summary/Keyword: fuzzy technique

Search Result 1,043, Processing Time 0.023 seconds

Improved Performance of Permanent Magnet Synchronous Motor by using Particle Swarm Optimization Techniques

  • Elwer, A.S.;Wahsh, S.A.
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.207-214
    • /
    • 2009
  • This paper presents a modem approach for speed control of a PMSM using the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the PI-Controller. The overall system simulated under various operating conditions and an experimental setup is prepared. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. Comparison between different controllers is achieved, using a PI controller which is tuned by two methods, firstly manually and secondly using the PSO technique. The system is tested under variable operating conditions. Implementation of the experimental setup is done. The simulation results show good dynamic response with fast recovery time and good agreement with experimental controller.

Blind Neural Equalizer using Higher-Order Statistics

  • Lee, Jung-Sik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.174-178
    • /
    • 2002
  • This paper discusses a blind equalization technique for FIR channel system, that might be minimum phase or not, in digital communication. The proposed techniques consist of two parts. One is to estimate the original channel coefficients based on fourth-order cumulants of the channel output, the other is to employ RBF neural network to model an inverse system fur the original channel. Here, the estimated channel is used as a reference system to train the RBF. The proposed RBF equalizer provides fast and easy teaming, due to the structural efficiency and excellent recognition-capability of R3F neural network. Throughout the simulation studies, it was found that the proposed blind RBF equalizer performed favorably better than the blind MLP equalizer, while requiring the relatively smaller computation steps in tranining.

The Performance Improvement of Speech Recognition System based on Stochastic Distance Measure

  • Jeon, B.S.;Lee, D.J.;Song, C.K.;Lee, S.H.;Ryu, J.W.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.254-258
    • /
    • 2004
  • In this paper, we propose a robust speech recognition system under noisy environments. Since the presence of noise severely degrades the performance of speech recognition system, it is important to design the robust speech recognition method against noise. The proposed method adopts a new distance measure technique based on stochastic probability instead of conventional method using minimum error. For evaluating the performance of the proposed method, we compared it with conventional distance measure for the 10-isolated Korean digits with car noise. Here, the proposed method showed better recognition rate than conventional distance measure for the various car noisy environments.

Formation Control for Underactuated Autonomous Underwater Vehicles Using the Approach Angle

  • Kim, Kyoung Joo;Park, Jin Bae;Choi, Yoon Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.154-163
    • /
    • 2013
  • In this paper, we propose a formation control algorithm for underactuated autonomous underwater vehicles (AUVs) with parametric uncertainties using the approach angle. The approach angle is used to solve the underactuated problem for AUVs, and the leader-follower strategy is used for the formation control. The proposed controller considers the nonzero off-diagonal terms of the mass matrix of the AUV model and the associated parametric uncertainties. Using the state transformation, the mass matrix, which has nonzero off-diagonal terms, is transformed into a diagonal matrix to simplify designing the control. To deal with the parametric uncertainties of the AUV model, a self-recurrent wavelet neural network is used. The proposed formation controller is designed based on the dynamic surface control technique. Some simulation results are presented to demonstrate the performance of the proposed control method.

A Matlab and Simulink Based Three-Phase Inverter Fault Diagnosis Method Using Three-Dimensional Features

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.173-180
    • /
    • 2016
  • Fault detection and diagnosis is a task to monitor the occurrence of faults and pinpoint the exact location of faults in the system. Fault detection and diagnosis is gaining importance in development of efficient, advanced and safe industrial systems. Three phase inverter is one of the most common and excessively used power electronic system in industries. A fault diagnosis system is essential for safe and efficient usage of these inverters. This paper presents a fault detection technique and fault classification algorithm. A new feature extraction approach is proposed by using three-phase load current in three-dimensional space and neural network is used to diagnose the fault. Neural network is responsible of pinpointing the fault location. Proposed method and experiment results are presented in detail.

A Study on feedrate Optimization System for Cutting Force Regulation (절삭력 추종을 위한 이송속도 최적화 시스템에 관한 연구)

  • 김성진;정영훈;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.214-222
    • /
    • 2003
  • Studies on the optimization of machining process can be divided into two different approaches: off-line feedrate scheduling and adaptive control. Each approach possesses its respective strong and weak points compared to each other. That is, each system can be complementary to the other. In this regard, a combined system, which is a feedrate control system fur cutting force optimization, was proposed in this paper to make the best of each approach. Experimental results show that the proposed system could overcome the weak points of the off-line feedrate scheduling system and the adaptive control system. In addition, from the figure, it can be confirmed that the off-line feedrate scheduling technique can improve the machining quality and can fulfill its function in the machine tool which has a adaptive controller.

Absolute Vehicle Speed Estimation using Neural Network Model (신경망 모델을 이용한 차량 절대속도 추정)

  • Oh, Kyeung-Heub;Song, Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.51-58
    • /
    • 2002
  • Vehicle dynamics control systems are. complex and non-linear, so they have difficulties in developing a controller for the anti-lock braking systems and the auto-traction systems. Currently the fuzzy-logic technique to estimate the absolute vehicle speed is good results in normal conditions. But the estimation error in severe braking is discontented. In this paper, we estimate the absolute vehicle speed by using the wheel speed data from standard 50-tooth anti-lock braking system wheel speed sensors. Radial symmetric basis function of the neural network model is proposed to implement and estimate the absolute vehicle speed, and principal component analysis on input data is used. Ten algorithms are verified experimentally to estimate the absolute vehicle speed and one of those is perfectly shown to estimate the vehicle speed with a 4% error during a braking maneuver.

In-Situ Diagnosis of Vapor-Compressed Chiller Performance for Energy Saving

  • Shin Younggy;Kim Youngil;Moon Guee-Won;Choi Seok-Weon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1670-1681
    • /
    • 2005
  • In-situ diagnosis of chiller performance is an essential step for energy saving business. The main purpose of the in-situ diagnosis is to predict the performance of a target chiller. Many models based on thermodynamics have been proposed for the purpose. However, they have to be modified from chiller to chiller and require profound knowledge of thermodynamics and heat transfer. This study focuses on developing an easy-to-use diagnostic technique that is based on adaptive neuro-fuzzy inference system (ANFIS). The effect of sample data distribution on training the ANFIS is investigated. It is found that the data sampling over 10 days during summer results in a reliable ANFIS whose performance prediction error is within measurement errors. The reliable ANFIS makes it possible to prepare an energy audit and suggest an energy saving plan based on the diagnosed chilled water supply system.

Camera Motion Parameter Estimation Technique using 2D Homography and LM Method based on Invariant Features

  • Cha, Jeong-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.297-301
    • /
    • 2005
  • In this paper, we propose a method to estimate camera motion parameter based on invariant point features. Typically, feature information of image has drawbacks, it is variable to camera viewpoint, and therefore information quantity increases after time. The LM(Levenberg-Marquardt) method using nonlinear minimum square evaluation for camera extrinsic parameter estimation also has a weak point, which has different iteration number for approaching the minimal point according to the initial values and convergence time increases if the process run into a local minimum. In order to complement these shortfalls, we, first propose constructing feature models using invariant vector of geometry. Secondly, we propose a two-stage calculation method to improve accuracy and convergence by using homography and LM method. In the experiment, we compare and analyze the proposed method with existing method to demonstrate the superiority of the proposed algorithms.

Adative Error Diffusion Using Fuzzy Relaxation Technique (퍼지 이완 방법을 이용한 적응적 오차 확산법)

  • 박양우;엄태억;장주석;하영호
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.5
    • /
    • pp.42-47
    • /
    • 1999
  • 연속 계조도 영상을 이진 영상(하프톤 영상)으로 변환하는 하프톤 기법중 대표적인 두 방법은 순차적 디더법과 오차 확산법이 있다. 이 중에서 오차확산법은 예리한 하프톤 영상을 얻기위한 우수한 하프톤 기법으로 잘 알려져 있다. 그러나 알고리듬에 기인하는 여러 인공잡음들이 발생하므로 이를 개선하기 위한 방법으로 최적의 필터 계수를 얻기 위한 많은 연구가 진행되었다. 본 논문에서는 연속 계조도 입력 영상과 하프톤 영상사이의 양자화 오차를 영상에 적응적이며 최적으로 확산시키기 위해 양자화 오차를 초기 가능성의 퍼지 부분 집합으로 정의하였다. 이러한 퍼지 부분 집합의 중심화소에 대해 이웃한 화소의 오차 가능성을 고려한 후 FAM 규칙을 이용하여 각각 화소들의 오차 가능성을 영상에 따라 적응적으로 갱신하였으며 이를 원영상에 더하여 다시 양자화 과정을 번복하는 퍼지 이완 알고리듬을 이용한 오차 확산법을 제안하였다. 제안한 방법을 이용하여 얻은 결과를 최적 필터 계수를 구하기 위한 기존의 방법의 결과 영상과 비교 분석하였다.

  • PDF