• Title/Summary/Keyword: fuzzy rules

Search Result 1,218, Processing Time 0.037 seconds

Design of a Model-Based Fuzzy Controller for Container Cranes (컨테이너 크레인을 위한 모델기반 퍼지제어기 설계)

  • Lee, Soo-Lyong;Lee, Yun-Hyung;Ahn, Jong-Kap;Son, Jeong-Ki;Choi, Jae-Jun;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.459-464
    • /
    • 2008
  • In this paper, we present the model-based fuzzy controller for container cranes which effectively performs set-point tracking control of trolley and anti-swaying control under system parameter and disturbance changes. The first part of this paper focuses on the development of Takagi-Sugeno (T-S) fuzzy modeling in a nonlinear container crane system. Parameters of the membership functions are adjusted by a RCGA to have same dynamic characteristics with nonlinear model of a container crane. In the second part, we present a design methodology of the model-based fuzzy controller. Sub-controllers are designed using LQ control theory for each subsystem in fuzzy model and then the proposed controller is performed with the combination of these sub-controllers by fuzzy IF-THEN rules. In the results of simulation, the fuzzy model showed almost similar dynamic characteristics compared to the outputs of the nonlinear container crane model. Also, the model-based fuzzy controller showed not only the fast settling time for the change in parameter and disturbance, but also stable and robust control performances without any steady-state error.

Intelligence Medical Diagnosis System using Cellular Phone (휴대폰을 이용한 지능형 의료진단 시스템)

  • Hong, You-Sik;Lee, Sang-Suk;Nam, Dong-Hyun;Lee, Woo-Beom;Choi, Jong-Gu;Song, Young-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.213-218
    • /
    • 2011
  • In this paper, we have developed a tongue diagnosis system using fuzzy rules. A healthy person's tongue is red in color and has less tongue coating. However, when a person suffers from a disease, the color of their tongue changes from red to white, blue, or black. Therefore, it can analyze patient's health if analyze color and coated tongue of tongue. Medical diagnosis system can automatically determines the symptoms of the disease of a patient and their and calculate the optimal acupuncture time on the basis of the patient's physical conditions, illness conditions, and age from any place and at any time. The computer simulation results have shown that electro-acupuncture administered by using the medical diagnosis system developed in this study is more effective than the conventional method.

Smart Plants Management System based on Internet (인터넷 기반 스마트 화초 관리 시스템)

  • Park, Hyunsook;Park, Chun-Kwan;Hong, You-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.193-199
    • /
    • 2015
  • Recently the artificial intelligence green house system, which collects automatically the informations of plants cultivation circumstances and controls the growing circumstances, is studied using temperature, humidity and illuminance sensors. In this paper, the inference for plants cultivation of optimum circumstance conditions is simulated on the internet bases by predicting the temperature, humidity and illuminance. On the IOT circumstances, the plant cultivation conditions of temperature, humidity and illuminance, using Arduino sensor, are transmitted to the manager on realtime and if the optimum condition of temperature and humidity for plant cultivation is not equal to the values, the system transmits automatically the SMS warning messages on realtime. Although the sudden climite conditions(snow, rain, hot weather) are occurred, the optimum condition of plant cultivation can be controlled. In this paper, using Fuzzy rules and WEKA TOOL, although the same flora temperature zone is used, the simulation is produced for the optimum value of temperature, humidity and illuminance for the zone.

A Neuro-Fuzzy System Modeling using Gaussian Mixture Model and Clustering Method (GMM과 클러스터링 기법에 의한 뉴로-퍼지 시스템 모델링)

  • Kim, Sung-Suk;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.571-576
    • /
    • 2002
  • There have been a lot of considerations dealing with improving the performance of neuro-fuzzy system. The studies on the neuro-fuzzy modeling have largely been devoted to two approaches. First is to improve performance index of system. The other is to reduce the structure size. In spite of its satisfactory result, it should be noted that these are difficult to extend to high dimensional input or to increase the membership functions. We propose a novel neuro-fuzzy system based on the efficient clustering method for initializing the parameters of the premise part. It is a very useful method that maintains a few number of rules and improves the performance. It combine the various algorithms to improve the performance. The Expectation-Maximization algorithm of Gaussian mixture model is an efficient estimation method for unknown parameter estimation of mirture model. The obtained parameters are used for fuzzy clustering method. The proposed method satisfies these two requirements using the Gaussian mixture model and neuro-fuzzy modeling. Experimental results indicate that the proposed method is capable of giving reliable performance.

Design and Evaluation of a Fuzzy Logic based Multi-hop Broadcast Algorithm for IoT Applications (IoT 응용을 위한 퍼지 논리 기반 멀티홉 방송 알고리즘의 설계 및 평가)

  • Bae, Ihn-han;Kim, Chil-hwa;Noh, Heung-tae
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.17-23
    • /
    • 2016
  • In the future network such as Internet of Things (IoT), the number of computing devices are expected to grow exponentially, and each of the things communicates with the others and acquires information by itself. Due to the growing interest in IoT applications, the broadcasting in Opportunistic ad-hoc networks such as Machine-to-Machine (M2M) is very important transmission strategy which allows fast data dissemination. In distributed networks for IoT, the energy efficiency of the nodes is a key factor in the network performance. In this paper, we propose a fuzzy logic based probabilistic multi-hop broadcast (FPMCAST) algorithm which statistically disseminates data accordingly to the remaining energy rate, the replication density rate of sending node, and the distance rate between sending and receiving nodes. In proposed FPMCAST, the inference engine is based the fuzzy rule base which is consists of 27 if-then rules. It maps input and output parameters to membership functions of input and output. The output of fuzzy system defines the fuzzy sets for rebroadcasting probability, and defuzzification is used to extract a numeric result from the fuzzy set. Here Center of Gravity (COG) method is used to defuzzify the fuzzy set. Then, the performance of FPMCAST is evaluated through a simulation study. From the simulation, we demonstrate that the proposed FPMCAST algorithm significantly outperforms flooding and gossiping algorithms. Specially, the FPMCAST algorithm has longer network lifetime because the residual energy of each node consumes evenly.

A Study of Optimal Ratio of Data Partition for Neuro-Fuzzy-Based Software Reliability Prediction (뉴로-퍼지 소프트웨어 신뢰성 예측에 대한 최적의 데이터 분할비율에 관한 연구)

  • Lee, Sang-Un
    • The KIPS Transactions:PartD
    • /
    • v.8D no.2
    • /
    • pp.175-180
    • /
    • 2001
  • This paper presents the optimal fraction of validation set to obtain a prediction accuracy of software failure count or failure time in the future by a neuro-fuzzy system. Given a fixed amount of training data, the most popular effective approach to avoiding underfitting and overfitting is early stopping, and hence getting optimal generalization. But there is unresolved practical issues : How many data do you assign to the training and validation set\ulcorner Rules of thumb abound, the solution is acquired by trial-and-error and we spend long time in this method. For the sake of optimal fraction of validation set, the variant specific fraction for the validation set be provided. It shows that minimal fraction of the validation data set is sufficient to achieve good next-step prediction. This result can be considered as a practical guideline in a prediction of software reliability by neuro-fuzzy system.

  • PDF

Development of the Expert System for Diagnosing Silicone Oil-filled Transformer (실리콘 유입변압기 진단을 위한 전문가시스템 개발)

  • 문종필;김재철;임태훈
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.55-62
    • /
    • 2004
  • In this paper, the diagnostic expert system for silicone oil-filled transformer is developed using dissolved gas analysis(DGA). There are many diagnostic methods for diagnostic oil-immersed transformer. But DGA is used to the proposed expert system since it has been verified that DGA is very efficient diagnostic method for transformer. In addition, it is resonable that fuzzy rule, degree of inclusion and fuzzy measure must be considered to handle the uncertainty nature of gas boundary and rules. The proposed expert system consists of knowledge base module, inference engine module and human-machine interface(HMI) module. The knowledge base module consists of the knowledge using the rule. The inference engine module is used to the fuzzy rule. The history of the transformer gas data is managed by the database. the effect of the proposed expert system is verified by case studies.

Robust Skin Area Detection Method in Color Distorted Images (색 왜곡 영상에서의 강건한 피부영역 탐지 방법)

  • Hwang, Daedong;Lee, Keunsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.350-356
    • /
    • 2017
  • With increasing attention to real-time body detection, active research is being conducted on human body detection based on skin color. Despite this, most existing skin detection methods utilize static skin color models and have detection rates in images, in which colors are distorted. This study proposed a method of detecting the skin region using a fuzzy classification of the gradient map, saturation, and Cb and Cr in the YCbCr space. The proposed method, first, creates a gradient map, followed by a saturation map, CbCR map, fuzzy classification, and skin region binarization in that order. The focus of this method is to rigorously detect human skin regardless of the lighting, race, age, and individual differences, using features other than color. On the other hand,the borders between these features and non-skin regions are unclear. To solve this problem, the membership functions were defined by analyzing the relationship between the gradient, saturation, and color features and generate 108 fuzzy rules. The detection accuracy of the proposed method was 86.35%, which is 2~5% better than the conventional method.

Analysis of Steady State Error on Simple FLC (단순 FLC의 정상상태오차 해석)

  • Lee, Kyoung-Woong;Choi, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.897-901
    • /
    • 2011
  • This paper presents a TS (Takagi-Sugeno) type FLC (Fuzzy Logic Controller) with only 3 rules. The choice of parameters of FLC is very difficult job on design FLC controller. Therefore, the choice of appropriate linguistic variable is an important part of the design of fuzzy controller. However, since fuzzy controller is nonlinear, it is difficult to analyze mathematically the affection of the linguistic variable. So this choice is depend on the expert's experience and trial and error method. In the design of the system, we use a variety of response characteristics like stability, rising time, overshoot, settling time, steady-state error. In particular, it is important for a stable system design to predict the steady-state error because the system's steady-state response of the system is related to the overall quality. In this paper, we propose the method to choose the consequence linear equation's parameter of T-S type FLC in the view of steady-state error. The parameters of consequence linear equations of FLC are tuned according to the system error that is the input of FLC. The full equation of T-S type FLC is presented and using this equation, the relation between output and parameters can represented. As well as the FLC parameters of consequence linear equations affect the stability of the system, it also affects the steady-state error. In this study, The system according to the parameter of consequence linear equations of FLC predict the steady-state error and the method to remove the system's steady-state error is proposed using the prediction error value. The simulation is carried out to determine the usefulness of the proposed method.

Neuro-Fuzzy Model based Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting (뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간, 일간, 주간 단위 예측)

  • Park, Yong-Jin;Wang, Bo-Hyeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.533-538
    • /
    • 2004
  • This paper proposes a systematic method to develop short-term electrical load forecasting systems using neuro-fuzzy models. The proposed system predicts the electrical loads with the lead times of 1 hour, 24 hour, and 168 hour. To do so, the load forecasting system first builds an initial structure off-line for each hour of four day types and then stores the resultant initial structures in the initial structure bank. 96 initial structures are constructed for each prediction lead time. Whenever a prediction needs to be made, the proposed system initializes the neuro-fuzzy model with the appropriate initial structure stored and trains the initialized prediction modell. To improve the performance of the prediction system in terms of accuracy and reliability at the same time, the prediction model employs only two inputs. It makes possible to interpret the fuzzy rules to be learned. In order to demonstrate the viability of the proposed method, we develop a load forecasting system by using the real load data collected during 1996 and 1997 at KEPCO. Simulation results reveal that the prediction system developed in this paper can achieve a remarkable improvement on both accuracy and reliability