• Title/Summary/Keyword: fuzzy outlier

Search Result 14, Processing Time 0.017 seconds

A Movie Recommendation System based on Fuzzy-AHP with User Preference and Partition Algorithm (사용자 선호도와 군집 알고리즘을 이용한 퍼지-계층적 분석 기법 기반 영화 추천 시스템)

  • Oh, Jae-Taek;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.15 no.11
    • /
    • pp.425-432
    • /
    • 2017
  • The current recommendation systems have problems including the difficulty of figuring out whether they recommend items that actual users have preference for or have simple interest in, the scarcity of data to recommend proper items due to the extremely small number of users, and the cold-start issue of the dropping system performance to recommend items that can satisfy users according to the influx of new users. In an effort to solve these problems, this study implemented a movie recommendation system to ensure user satisfaction by using the Fuzzy-Analytic Hierarchy Process, which can reflect uncertain situations and problems, and the data partition algorithm to group similar items among the given ones. The data of a survey on movie preference with 61 users was applied to the system, and the results show that it solved the data scarcity problem based on the Fuzzy-AHP and recommended items fit for a user with the data partition algorithm even with the influx of new users. It is thought that research on the density-based clustering will be needed to filter out future noise data or outlier data.

Fuzzy Neural Network Using a Learning Rule utilizing Selective Learning Rate (선택적 학습률을 활용한 학습법칙을 사용한 신경회로망)

  • Baek, Young-Sun;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.672-676
    • /
    • 2010
  • This paper presents a learning rule that weights more on data near decision boundary. This learning rule generates better decision boundary by reducing the effect of outliers on the decision boundary. The proposed learning rule is integrated into IAFC neural network. IAFC neural network is stable to maintain previous learning results and is plastic to learn new data. The performance of the proposed fuzzy neural network is compared with performances of LVQ neural network and backpropagation neural network. The results show that the performance of the proposed fuzzy neural network is better than those of LVQ neural network and backpropagation neural network.

An implementation of automated ECG interpretation algorithm and system(IV) - Typificator (심전도 자동 진단 알고리즘 및 장치 구현(IV) - 특성표시기)

  • Kweon, H.J.;Jeong, K.S.;Song, C.G.;Shin, K.S.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.293-297
    • /
    • 1996
  • For the representative beat calculation and efficient rhythm analysis new method, that is, QRS typification were proposed. A problem that were resulted from pattern classification based on binary logic could be solved out by the fuzzy clustering and classification nodes could be reduced by using the proposed new feature vector. The accurate representative beat could be obtained by excluding the ST-T segment that happened outlier through ST-T segment typification procedure.

  • PDF

Robust Parameter Estimation using Fuzzy RANSAC (퍼지 RANSAC을 이용한 강건한 인수 예측)

  • Lee Joong-Jae;Jang Hyo-Jong;Kim Gye-Young;Choi Hyung-il
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.2
    • /
    • pp.252-266
    • /
    • 2006
  • Many problems in computer vision are mainly based on mathematical models. Their optimal solutions can be found by estimating the parameters of each model. However, provided an input data set is involved outliers which are relative]V larger than normal noises, they lead to incorrect results. RANSAC is a representative robust algorithm which is used to resolve the problem. One major problem with RANSAC is that it needs priori knowledge(i.e. a percentage of outliers) of the distribution of data. To solve this problem, we propose a FRANSAC algorithm which improves the rejection rate of outliers and the accuracy of solutions. This is peformed by categorizing all data into good sample set, bad sample set and vague sample set using a fuzzy classification at each iteration and sampling in only good sample set. In the experimental results, we show that the performance of the proposed algorithm when it is applied to the linear regression and the calculation of a homography.