• Title/Summary/Keyword: fuzzy membership functions

Search Result 591, Processing Time 0.028 seconds

Application of KITSAT-3 Images: Automated Generation of Fuzzy Rules and Membership Functions for Land-cover Classification of KITSAT-3 Images

  • Park, Won-Kyu;Choi, Soon-Dal
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.48-53
    • /
    • 1999
  • The paper presents an automated method for generating fuzzy rules and fuzzy membership functions for pattern classification from training sets of examples and an application to the land-cover classification. Initially, fuzzy subspaces are created from the partitions formed by the minimum and maximum of individual feature values of each class. The initial membership functions are determined according to the generated fuzzy partitions. The fuzzy subspaces are further iteratively partitioned if the user-specified classification performance has not been archived on the training set. Our classifier was trained and tested on patterns consisting of the DN of each band, (XS1, XS2, XS3), extracted from KITSAT-3 multispectral scene. The result represents that our classification method has higher generalization power.

  • PDF

A Fuzzy Traffic Controller Considering Spillback on Crossroads

  • Park, Wan-Kyoo;Lee, Sung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • In this paper, we propose a fuzzy traffic controller that is able to cope with traffic congestion appropriately. In order to consider such situation as loss of green time caused by spillback of upper crossroad, it imports a degree of traffic congestion of upper roads which vehicles on a crossroad are to proceed to. We constructed the equal-partitioned fuzzy traffic controller that uses the membership functions of the same size and shape, and modified the size and shape, and modified the size and shape of its membership functions by the membership function modification algorithm. In experiment, we compared and analyzed the fixed signal controller, the fuzzy traffic controller with the membership of the same size and shape, and the modified fuzzy traffic controller by using the delay time, the proportion of entered vehicles to occurred vehicles and the proportion of passed vehicles to entered vehicles. As a result of experiment, the modified fuzzy controller showed more enhanced performance than others.

  • PDF

An Optimized Multiple Fuzzy Membership Functions based Image Contrast Enhancement Technique

  • Mamoria, Pushpa;Raj, Deepa
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1205-1223
    • /
    • 2018
  • Image enhancement is an emerging method for analyzing the images clearer for interpretation and analysis in the spatial domain. The goal of image enhancement is to serve an input image so that the resultant image is more suited to the particular application. In this paper, a novel method is proposed based on Mamdani fuzzy inference system (FIS) using multiple fuzzy membership functions. It is observed that the shape of membership function while converting the input image into the fuzzy domain is the essential important selection. Then, a set of fuzzy If-Then rule base in fuzzy domain gives the best result in image contrast enhancement. Based on a different combination of membership function shapes, a best predictive solution can be determined which can be suitable for different types of the input image as per application requirements. Our result analysis shows that the quality attributes such as PSNR, Index of Fuzziness (IOF) parameters give different performances with a selection of numbers and different sized membership function in the fuzzy domain. To get more insight, an optimization algorithm is proposed to identify the best combination of the fuzzy membership function for best image contrast enhancement.

A Fuzzy Traffic Controller Considering the spillback on the Multiple Crossroads

  • Kim, Young-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.722-728
    • /
    • 2003
  • In this paper, we propose a fuzzy traffic controller of Sugeno`s fuzzy model so as to model the nonlinear characteristics of controlling the traffic light. It use a degree of the traffic congestion of the preceding roads as an input so that it can cope with traffic congestion appropriately, which causes the loss of fuel and our discomfort. First, in order to construct fuzzy traffic controller of Sugeno`s fuzzy model, we model the control process of the traffic light by using Mamdani`s fuzzy model, which has the uniform membership functions of the same size and shape. Second, we make Mamdani`s fuzzy model with the non-uniform membership functions so that it can exactly reflect the knowledge of experts and operators. Last, we construct the fuzzy traffic controller of Sugeno`s fuzzy model by learning from the input/output data, which is retrieved from Mamdani`s fuzzy model with the non-uniform membership functions. We compared and analyzed the fixed traffic light controller, the fuzzy traffic controller of Mamdani`s fuzzy model and the fuzzy traffic controller of Sugeno`s fuzzy model by using the delay time and the proportion of the entered vehicles to the occurred vehicles. As a result of comparison, the fuzzy traffic controller of Sugeno`s fuzzy model showed the best performance.

Analysis of Fuzzy Entropy and Similarity Measure for Non Convex Membership Functions

  • Lee, Sang-H.;Kim, Sang-Jin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.1
    • /
    • pp.4-9
    • /
    • 2009
  • Fuzzy entropy is designed for non convex fuzzy membership function using well known Hamming distance measure. Design procedure of convex fuzzy membership function is represented through distance measure, furthermore characteristic analysis for non convex function are also illustrated. Proof of proposed fuzzy entropy is discussed, and entropy computation is illustrated.

Backward Control Simulation of Tractor-Trailer Using Fuzzy Logic and Genetic Algorithms (퍼지논리와 유전알고리즘을 이용한 트랙터-트레일러의 후진제어 시뮬레이션)

  • 조성인;기노훈
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.87-94
    • /
    • 1995
  • When farmer loads and unloads farm products with a trailer, linked to a tractor, the tractor-trailer is backed up to the loading duck. However, travelling backward is not easy and takes a time for even skilled operators. Therefore, unmanned backing up is necessary to save the effort. A backward controller of tractor-trailer was simulated using fuzzy logic and genetic algorithms. Operators drive the tractor-trailer back and forth several times for backing up to the loading duck. As the operators did it, a backward controller was designed using fuzzy logic. And genetic algorithms was applied to improve the performance of the backward controller. With the strings coded with the fuzzy membership functions, genetic operations were carried out. After 30 generations, the best fitted fuzzy membership functions were found. Those membership functions were used in the fuzzy backward controller. The fuzzy controller combined with genetic algorithms showed the better results than the fuzzy controller did alone.

  • PDF

An Adaptive Neuro-Fuzzy System Using Fuzzy Min-Max Networks (퍼지 Min-Max 네트워크를 이용한 적응 뉴로-퍼지 시스템)

  • 곽근창;김성수;김주식;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.367-367
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian membership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF

A Fuzzy Based Solution for Allocation and Sizing of Multiple Active Power Filters

  • Moradifar, Amir;Soleymanpour, Hassan Rezai
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.830-841
    • /
    • 2012
  • Active power filters (APF) can be employed for harmonic compensation in power systems. In this paper, a fuzzy based method is proposed for identification of probable APF nodes of a radial distribution system. The modified adaptive particle swarm optimization (MAPSO) technique is used for final selection of the APFs size. A combination of Fuzzy-MAPSO method is implemented to determine the optimal allocation and size of APFs. New fuzzy membership functions are formulated where the harmonic current membership is an exponential function of the nodal injecting harmonic current. Harmonic voltage membership has been formulated as a function of the node harmonic voltage. The product operator shows better performance than the AND operator because all harmonics are considered in computing membership function. For evaluating the proposed method, it has been applied to the 5-bus and 18-bus test systems, respectively, which the results appear satisfactorily. The proposed membership functions are new at the APF placement problem so that weighting factors can be changed proportional to objective function.

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF

Interactive Fuzzy Multiobjective Decision-Making with Imprecise Goals (모호한 목표를 가진 대화형 퍼지 다목적 의사결정)

  • ;;Hong, S. L.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.3
    • /
    • pp.67-78
    • /
    • 1992
  • MODM (multiobjective decision-making) problem is very complex system for the analyst. The problem is more complex if the goals of each of the objective functions are expressed imprecisely. It requires suitable MODM method to deal with imprecisions. Therefore, we present a new interactive fuzzy decision making method for solving multiobjective nonlinear programming problems by assuming that the decision maker (DM) has imprecise goals that assume fuzzy linguistic variable for each of the objective functions. The imprecise goals of the DM are quantified by eliciting corresponding membership functions through the interactive with the DM out of six membership functions. After determining membership functions, in order to generate the compromise or satisficing solution which is .lambda.-pareto optimal, .lambda.-max problem is solved. The higher degree of membership is chosen to satisfy imprecise goals of all objective functions by combining the membership functions. Then, the values are the compromise or satisficing solution. On the basis of the proposed method, and interactive computer programming is written to implement man-machine interactive procedures. Our programming is a revised version of sequential unconstrained minimization technique. Finally, a numerical example illustrates various aspects of the results developed in this paper.

  • PDF