• 제목/요약/키워드: fuzzy learning

검색결과 980건 처리시간 0.031초

최적의 퍼지제어규칙을 얻기위한 퍼지학습법 (A Learning Algorithm for Optimal Fuzzy Control Rules)

  • 정병묵
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.399-407
    • /
    • 1996
  • A fuzzy learning algorithm to get the optimal fuzzy rules is presented in this paper. The algorithm introduces a reference model to generate a desired output and a performance index funtion instead of the performance index table. The performance index funtion is a cost function based on the error and error-rate between the reference and plant output. The cost function is minimized by a gradient method and the control input is also updated. In this case, the control rules which generate the desired response can be obtained by changing the portion of the error-rate in the cost funtion. In SISO(Single-Input Single- Output)plant, only by the learning delay, it is possible to experss the plant model and to get the desired control rules. In the long run, this algorithm gives us the good control rules with a minimal amount of prior informaiton about the environment.

자기 학습 능력을 가진 퍼지 제어기를 이용한 차량의 속력 제어기 개발 (A SPEED CONTROLLER FOR VEHICLES USING FUZZY CONTROL ALGORITHM WITH SELF0LEARNING)

  • 정승현;김상우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.880-883
    • /
    • 1996
  • This paper suggests a speed control algorithm for the ICC(Intelligent Cruise Controller) system. The speed controller is designed using the fuzzy controller which shows the good performance in nonlinear system having the complex mathematical model. The fuzzy controller was equipped with the capability of a self-learning in real time in order to maintain the good performance of the speed controller in a time-varying environment the self-learning properties and the performance of the fuzzy controller are showed via computer simulation. The suggested fuzzy controller will be applied to the PRV-III which is our test vehicle.

  • PDF

클래스간의 거리를 고려한 학습법칙을 사용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using A Learning Rule Considering the Distances Between Classes)

  • 김용수;백용선;이세열
    • 한국지능시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.460-465
    • /
    • 2006
  • 본 논문은 입력 벡터와 클래스들의 대표값들간의 유클리디안 거리들을 사용한 새로운 퍼지 학습법칙을 제안한다. 이 새로운 퍼지 학습을 supervised IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망 4에 적용하였다. 이 신경회로망은 안정성을 유지하면서도 유연성을 가지고 있다. iris 데이터를 사용하여 테스트한 결과 supervised IAFC 신경회로망 4는 오류역전파 신경회로망과 LVQ 알고리듬보다 성능이 우수하였다.

자기부상시스템을 위한 교수-학습 최적화 알고리즘 기반의 퍼지 PID 제어기 설계 (Design of TLBO-based Optimal Fuzzy PID Controller for Magnetic Levitation System)

  • 조재훈;김용태
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.701-708
    • /
    • 2017
  • This paper proposes an optimum design method using Teaching-Learning-based optimization for the fuzzy PID controller of Magnetic levitation rail-guided vehicle. Since an attraction-type levitation system is intrinsically unstable, it is difficult to completely satisfy the desired performance through the conventional control methods. In the paper, a fuzzy PID controller with fixed parameters is applied and then the optimum parameters of fuzzy PID controller are selected by Teaching-Learning optimization. For the fitness function of Teaching-Learning optimization, the performance index of PID controller is used. To verify the performances of the proposed method, we use a Maglev model and compare the proposed method with the performance of PID controller. The simulation results show that the proposed method is more effective than conventional PID controller.

Fuzzy Classifier System for Edge Detection

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.52-57
    • /
    • 2003
  • In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection. The classifier system of Holland can evaluate the usefulness of rules represented by classifiers with repeated learning. FCS makes the classifier system be able to carry out the mapping from continuous inputs to outputs. It is the FCS that applies the method of machine learning to the concept of fuzzy logic. It is that the antecedent and consequent of classifier is same as a fuzzy rule. In this paper, the FCS is the Michigan style. A single fuzzy if-then rule is coded as an individual. The average gray levels which each group of neighbor pixels has are represented into fuzzy set. Then a pixel is decided whether it is edge pixel or not using fuzzy if-then rules. Depending on the average of gray levels, a number of fuzzy rules can be activated, and each rules makes the output. These outputs are aggregated and defuzzified to take new gray value of the pixel. To evaluate this edge detection, we will compare the new gray level of a pixel with gray level obtained by the other edge detection method such as Sobel edge detection. This comparison provides a reinforcement signal for FCS which is reinforcement learning. Also the FCS employs the Genetic Algorithms to make new rules and modify rules when performance of the system needs to be improved.

동등 변환 2계층 퍼지 시스템의 규칙 자동 학습 (Automatic learning of fuzzy rules for the equivalent 2 layered hierarchical fuzzy system)

  • 주문갑
    • 한국지능시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.598-603
    • /
    • 2007
  • 본 논문에서는 다입력 퍼지 시스템에서 생기는 퍼지 규칙수의 기하급수적 증가를 막기 위하여, 1번째 계층에서는 주어진 퍼지 시스템으로부터 선형 독립의 퍼지 규칙 벡터를 구성하여 사용하고, 2계층에서는 1계층에서 사용된 퍼지 규칙 벡터들의 선형합을 사용하는 동등 변환된 2계층 퍼지시스템 구조에서, steapest descent 알고리듬을 이용한 퍼지 규칙의 자동 학습을 다룬다. 학습 방법의 타당성을 보이기 위하여, 공과 막대 시스템을 제어하는 기존의 퍼지 시스템을 학습한 결과를 보인다.

Self-generation을 이용한 퍼지 지도 학습 알고리즘 (Fuzzy Supervised Learning Algorithm by using Self-generation)

  • 김광백
    • 한국멀티미디어학회논문지
    • /
    • 제6권7호
    • /
    • pp.1312-1320
    • /
    • 2003
  • 본 논문에서는 하나의 은닉층을 가지는 다층 구조 신경망이 고려되었다. 다층 구조 신경망에서 널리 사용되는 오루 역전파 학습 방법은 초기 가중치와 불충분한 은닉층 노드 수로 인하여 지역 최소화에 빠질 가능성이 있다. 따라서 본 논문에서는 퍼지 단층 퍼셉트론에 ART1을 결합한 방법으로, 은닉층의 노드를 자가 생성(self-generation)하는 퍼지 지도 학습 알고리즘을 제안한다. 입력층에서 은닉층으로 노드를 생성시키는 방식은 ART1을 수정하여 사용하였고, 가중치 조정은 특정 패턴에 대한 저장 패턴을 수정하도록 하는 winner-take-all 방식을 적용하였다. 제안된 학습 방법의 성능을 평가하기 위하여 학생증 영상을 대상으로 실험한 결과. 기존의 오류 역전파 알고즘보다 연결 가중치들이 지역 최소화에 위치할 가능성이 줄었고 학습 속도 및 정체 현상이 개선되었다.

  • PDF

On Neural Fuzzy Systems

  • Su, Shun-Feng;Yeh, Jen-Wei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권4호
    • /
    • pp.276-287
    • /
    • 2014
  • Neural fuzzy system (NFS) is basically a fuzzy system that has been equipped with learning capability adapted from the learning idea used in neural networks. Due to their outstanding system modeling capability, NFS have been widely employed in various applications. In this article, we intend to discuss several ideas regarding the learning of NFS for modeling systems. The first issue discussed here is about structure learning techniques. Various ideas used in the literature are introduced and discussed. The second issue is about the use of recurrent networks in NFS to model dynamic systems. The discussion about the performance of such systems will be given. It can be found that such a delay feedback can only bring one order to the system not all possible order as claimed in the literature. Finally, the mechanisms and relative learning performance of with the use of the recursive least squares (RLS) algorithm are reported and discussed. The analyses will be on the effects of interactions among rules. Two kinds of systems are considered. They are the strict rules and generalized rules and have difference variances for membership functions. With those observations in our study, several suggestions regarding the use of the RLS algorithm in NFS are presented.

Physiological Neuro-Fuzzy Learning Algorithm for Face Recognition

  • Kim, Kwang-Baek;Woo, Young-Woon;Park, Hyun-Jung
    • Journal of information and communication convergence engineering
    • /
    • 제5권1호
    • /
    • pp.50-53
    • /
    • 2007
  • This paper presents face features detection and a new physiological neuro-fuzzy learning method by using two-dimensional variances based on variation of gray level and by learning for a statistical distribution of the detected face features. This paper reports a method to learn by not using partial face image but using global face image. Face detection process of this method is performed by describing differences of variance change between edge region and stationary region by gray-scale variation of global face having featured regions including nose, mouse, and couple of eyes. To process the learning stage, we use the input layer obtained by statistical distribution of the featured regions for performing the new physiological neuro-fuzzy algorithm.

Pruning and Learning Fuzzy Rule-Based Classifier

  • Kim, Do-Wan;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.663-667
    • /
    • 2004
  • This paper presents new pruning and learning methods for the fuzzy rule-based classifier. The structure of the proposed classifier is framed from the fuzzy sets in the premise part of the rule and the Bayesian classifier in the consequent part. For the simplicity of the model structure, the unnecessary features for each fuzzy rule are eliminated through the iterative pruning algorithm. The quality of the feature is measured by the proposed correctness method, which is defined as the ratio of the fuzzy values for a set of the feature values on the decision region to one for all feature values. For the improvement of the classification performance, the parameters of the proposed classifier are finely adjusted by using the gradient descent method so that the misclassified feature vectors are correctly re-categorized. The cost function is determined as the squared-error between the classifier output for the correct class and the sum of the maximum output for the rest and a positive scalar. Then, the learning rules are derived from forming the gradient. Finally, the fuzzy rule-based classifier is tested on two data sets and is found to demonstrate an excellent performance.

  • PDF