• Title/Summary/Keyword: fuzzy inference logic

Search Result 259, Processing Time 0.031 seconds

Automatic Log-in System by the Speaker Certification

  • Sohn, Young-Sun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.176-181
    • /
    • 2004
  • This paper introduces a Web site login system that uses user's native voice to improve the bother of remembering the ID and password in order to login the Web site. The DTW method that applies fuzzy inference is used as the speaker recognition algorithm. We get the ACC(Average Cepstrum Coefficient) membership function by each degree, by using the LPC that models the vocal chords, to block the recorded voice that is problem for the speaker recognition. We infer the existence of the recorded voice by setting on the basis of the number of zeros that is the value of the ACC membership function, and on the basis of the average value of the ACC membership function. We experiment the six Web sites for the six subjects and get the result that protects the recorded voice about 98% that is recorded by the digital recorder.

A Study on Fuzzy Rule Functional Verification for Service ratio Prediction of Server in ATM Networks (ATM망에서 서버의 서비스율 예측을 위한 퍼지 규칙 기능 검증에 관한 연구)

  • 정동성;이용학
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.10
    • /
    • pp.69-77
    • /
    • 2004
  • In this thesis, we created a Fuzzy rule in a Fuzzy logic that are fuzzy logic which is composed of linguistic rules and Fuzzy inference engine for effective traffic control in ATM networks. The parameters of the Fuzzy rules are adapted to minimize the given performance index in both cases. In other words, the difuzzification value controls the service rate in the server to total traffic arrival ratio and buffer occupancy ratio using fuzzy set theory for traffic connected after reasoning. Also, show experiment result about rule by MATLAB6.5 and on-line bulid-up to verify validity of created Fuzzy rule. As a result, we can verify that service ratio in server is efficiently controlled by the total traffic arrival ratio and buffer occupancy ratio.

Variable structure control with fuzzy reaching law method for nonlinear systems (비선형 시스템에 대한 퍼지 도달 법칙을 가지는 가변 구조 제어)

  • Sa-Gong, Seong-Dae;Lee, Yeon-Jeong;Choe, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.279-286
    • /
    • 1996
  • In this paper, variable structure control(VSC) based on reaching law method with fuzzy inference for nonlinear systems is proposed. The reaching law means the reaching condition which forces an initial state of system to reach switching surface in finite time, and specifies the dynamics of a desired switching function. Since the conventional reaching law has fixed coefficients, the chattering can be existed largely in sliding mode. In the design of a proposed fuzzy reaching law, we fuzzify RP(representative point)'s orthogonal distance to switching surface and RP's distance the origin of the 2-dimensional space whose coordinates are the error and the error rate. The coefficients of the reaching law are varied appropriately by the fuzzy inference. Hence the state of system in reaching mode reaches fastly switching surface by the large values of reaching coefficients and the chattering is reduced in sliding mode by the small values of those. And the effectiveness of the proposed fuzzy reaching law method is showen by the simulation results of the control of a two link robot manipulator.

  • PDF

Internal singular configuration analysis and adaptive fuzzy logic control implementatioin for a planar parallel manipulator (평면형 병렬 매니퓰레이터의 내부 특이형상 해석 및 적응 퍼지논리제어 구현)

  • Song, Nak-Yun;Cho, Whang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.81-90
    • /
    • 2000
  • Parallel manipulator is suitable for the high precise task because it than has higher stiffness, larger load capacity and more excellent precision, due to the closed-lop structure, than serial manipulator. But the controller design for parallel manipulator is difficult because the parallel manipulator has both the complexity of structure and the interference of actuators. The precision improvement of parallel manipulator using a classical linear control scheme is difficult because the parallel manipulator has the tough nonlinear characteristics. In this paper, firstly, the kinematic analysis of a parallel manipulator used at the experiments is performed so as to show the controllability. The analysis of internal singular configuration of the workspace is performed using the kinematic isotropic index so a sto show the limitation of control performance of a simple linear controller with fixed control gains. Secondly, a control scheme is designed by using an adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller is often used for the control of nonlinear system because it has both the inference ability and the learning ability. Lastly, the effeciency of designed control scheme is demonstrated by the real-time control experiments with IBM PC interface logic H/W and S/W of my won making. The experimental results was a success.

  • PDF

Image Analysis Fuzzy System

  • Abdelwahed Motwakel;Adnan Shaout;Anwer Mustafa Hilal;Manar Ahmed Hamza
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.163-177
    • /
    • 2024
  • The fingerprint image quality relies on the clearness of separated ridges by valleys and the uniformity of the separation. The condition of skin still dominate the overall quality of the fingerprint. However, the identification performance of such system is very sensitive to the quality of the captured fingerprint image. Fingerprint image quality analysis and enhancement are useful in improving the performance of fingerprint identification systems. A fuzzy technique is introduced in this paper for both fingerprint image quality analysis and enhancement. First, the quality analysis is performed by extracting four features from a fingerprint image which are the local clarity score (LCS), global clarity score (GCS), ridge_valley thickness ratio (RVTR), and the Global Contrast Factor (GCF). A fuzzy logic technique that uses Mamdani fuzzy rule model is designed. The fuzzy inference system is able to analyse and determinate the fingerprint image type (oily, dry or neutral) based on the extracted feature values and the fuzzy inference rules. The percentages of the test fuzzy inference system for each type is as follow: For dry fingerprint the percentage is 81.33, for oily the percentage is 54.75, and for neutral the percentage is 68.48. Secondly, a fuzzy morphology is applied to enhance the dry and oily fingerprint images. The fuzzy morphology method improves the quality of a fingerprint image, thus improving the performance of the fingerprint identification system significantly. All experimental work which was done for both quality analysis and image enhancement was done using the DB_ITS_2009 database which is a private database collected by the department of electrical engineering, institute of technology Sepuluh Nopember Surabaya, Indonesia. The performance evaluation was done using the Feature Similarity index (FSIM). Where the FSIM is an image quality assessment (IQA) metric, which uses computational models to measure the image quality consistently with subjective evaluations. The new proposed system outperformed the classical system by 900% for the dry fingerprint images and 14% for the oily fingerprint images.

Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering (C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계)

  • Baek, Jin-Yeol;Lee, Young-Il;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.842-848
    • /
    • 2008
  • This paper deal with uncertainty problem by using Type-2 fuzzy logic set for nonlinear system modeling. We design Type-2 fuzzy logic system in which the antecedent and the consequent part of rules are given as Type-2 fuzzy set and also analyze the performance of the ensuing nonlinear model with uncertainty. Here, the apexes of the antecedent membership functions of rules are decided by C-means clustering algorithm and the apexes of the consequent membership functions of rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The proposed model is demonstrated with the aid of two representative numerical examples, such as mathematical synthetic data set and Mackey-Glass time series data set and also we discuss the approximation as well as generalization abilities for the model.

A Study on Fuzzy Rule Functional Verification for Threshold Value Prediction of Buffer in ATM Networks (ATM 망에서 버퍼의 임계값 예측을 위한 퍼지 규칙 기능 검증에 관한 연구)

  • 정동성;이용학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1149-1158
    • /
    • 2004
  • In this thesis, we created a Fuzzy rule in a Fuzzy logic that are Fuzzy logic which is composed of linguistic rules and Fuzzy inference engine for effective traffic control in ATM networks. The parameters of the Fuzzy rules are adapted to minimize the given performance index in both cases. In other words, the difuzzification value controls the threshold in the buffer to arrival ratio to traffic priority (low or high) using fuzzy set theory for traffic connected after reasoning. Also, show experiment result about rule by MATLAB6.5 and on-line bulid-up to verify validity of created Fuzzy rule. As a result, we can verify that threshold value in buffer is efficiently controlled by the traffic arrival ratio.

Design of fuzzy logic controller based on conflict-inconsistent rules

  • Bien, Zeungnam;Yu, Wansik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.30-35
    • /
    • 1992
  • Conflicting or inconsistent rules sometimes help us to represent the control actions of an expert more freely. Also, uncertainties about the control actions of the expert may render rules with conclusions whore membership functions have different width in their shapes. Conventional inference methods for FLC may not effectively handle such inconsistencies and/or rules containing such conclusions. In this paper, an effective inference method dealing with such If-Then rules is proposed.

  • PDF

A Learning Fuzzy Logic Controller Using Neural Networks (신경회로망을 이용한 학습퍼지논리제어기)

  • Kim, B.S.;Ryu, K.B.;Min, S.S.;Lee, K.C.;Kim, C.E.;Cho, K.B.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.225-230
    • /
    • 1992
  • In this paper, a new learning fuzzy logic controller(LFLC) is presented. The proposed controller is composed of the main control part and the learning part. The main control part is a fuzzy logic controller(FLC) based on linguistic rules and fuzzy inference. For the learning part, artificial neural network(ANN) is added to FLC so that the controller may adapt to unknown plant and environment. According to the output values of the ANN part, which is learned using error back-propagation algorithm, scale factors of the FLC part are determined. These scale factors transfer the range of values of input variables into corresponding universe of discourse in the FLC part in order to achieve good performance. The effectiveness of the proposed control strategy has been demonstrated through simulations involving the control of an unknown robot manipulator with load disturbance.

  • PDF

Fuzzy inference systems based prediction of engineering properties of two-stage concrete

  • Najjar, Manal F.;Nehdi, Moncef L.;Azabi, Tareq M.;Soliman, Ahmed M.
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.133-142
    • /
    • 2017
  • Two-stage concrete (TSC), also known as pre-placed aggregate concrete, is characterized by its unique placement technique, whereby the coarse aggregate is first placed in the formwork, then injected with a special grout. Despite its superior sustainability and technical features, TSC has remained a basic concrete technology without much use of modern chemical admixtures, new binders, fiber reinforcement or other emerging additions. In the present study, an experimental database for TSC was built. Different types of cementitious binders (single, binary, and ternary) comprising ordinary portland cement, fly ash, silica fume, and metakaolin were used to produce the various TSC mixtures. Different dosages of steel fibres having different lengths were also incorporated to enhance the mechanical properties of TSC. The database thus created was used to develop fuzzy logic models as predictive tools for the grout flowability and mechanical properties of TSC mixtures. The performance of the developed models was evaluated using statistical parameters and error analyses. The results indicate that the fuzzy logic models thus developed can be powerful tools for predicting the TSC grout flowability and mechanical properties and a useful aid for the design of TSC mixtures.