• Title/Summary/Keyword: fuzzy inference

Search Result 1,297, Processing Time 0.028 seconds

Frequentist and Bayesian Learning Approaches to Artificial Intelligence

  • Jun, Sunghae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.111-118
    • /
    • 2016
  • Artificial intelligence (AI) is making computer systems intelligent to do right thing. The AI is used today in a variety of fields, such as journalism, medical, industry as well as entertainment. The impact of AI is becoming larger day after day. In general, the AI system has to lead the optimal decision under uncertainty. But it is difficult for the AI system can derive the best conclusion. In addition, we have a trouble to represent the intelligent capacity of AI in numeric values. Statistics has the ability to quantify the uncertainty by two approaches of frequentist and Bayesian. So in this paper, we propose a methodology of the connection between statistics and AI efficiently. We compute a fixed value for estimating the population parameter using the frequentist learning. Also we find a probability distribution to estimate the parameter of conceptual population using Bayesian learning. To show how our proposed research could be applied to practical domain, we collect the patent big data related to Apple company, and we make the AI more intelligent to understand Apple's technology.

Adaptive Bayesian Object Tracking with Histograms of Dense Local Image Descriptors

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.104-110
    • /
    • 2016
  • Dense local image descriptors like SIFT are fruitful for capturing salient information about image, shown to be successful in various image-related tasks when formed in bag-of-words representation (i.e., histograms). In this paper we consider to utilize these dense local descriptors in the object tracking problem. A notable aspect of our tracker is that instead of adopting a point estimate for the target model, we account for uncertainty in data noise and model incompleteness by maintaining a distribution over plausible candidate models within the Bayesian framework. The target model is also updated adaptively by the principled Bayesian posterior inference, which admits a closed form within our Dirichlet prior modeling. With empirical evaluations on some video datasets, the proposed method is shown to yield more accurate tracking than baseline histogram-based trackers with the same types of features, often being superior to the appearance-based (visual) trackers.

A knowledge Conversion Tool for Expert Systems

  • Kim, Jin-S.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Most of expert systems use the text-oriented knowledge bases. However, knowledge management using the knowledge bases is considered as a huge burden to the knowledge workers because it includes some troublesome works. It includes chasing and/or checking activities on Consistency, Redundancy, Circulation, and Refinement of the knowledge. In those cases, we consider that they could reduce the burdens by using relational database management systems-based knowledge management infrastructure and convert the knowledge into one of easy forms human can understand. Furthermore they could concentrate on the knowledge itself with the support of the systems. To meet the expectations, in this study, we have tried to develop a general-purposed knowledge conversion tool for expert systems. Especially, this study is focused on the knowledge conversions among text-oriented knowledge base, relational database knowledge base, and decision tree.

Implementation of an interval Based expert system for diagnoisis of Oriental Traditional Medicine

  • Phuong, Nguyen-Hoang;Duong, Uong-Huong;Kwak, Yun-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.486-495
    • /
    • 2001
  • This paper describes an implementation of the interval based expert system for syndrome differential diagnosis of Oriental Traditional Medicine (OTM). An approximate reasoning model using fuzzy logic for syndrome differential diagnosis is proposed. Based on this model, we implemented the system for diagnosing Eight rule diagnosis, organ diagnosis and then final differential syndrome of OTM. After carrying out inference process, the system will provide patient\`s syndromes differentiation diagnosis in the intervals and will give the explanation, which helps the user to understand the obtained conclusions.

  • PDF

Verification of a hybrid control approach for spacecraft attitude stabilization through hardware-in-the-loop simulation

  • Kim, Sung-Woo;Park, Sang-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.32.2-32.2
    • /
    • 2011
  • State dependent Riccati equation (SDRE) control technique has been widely used in the control society. Although it solves nonlinear optimal control problems, which minimizes state error and control efforts simultaneously, it has drawbacks when it is to be applied to the real time systems in that it requires much computational efforts. So the real time system whose computational ability is limited (for example, satellites) cannot afford to use SDRE controller. To solve this problem, a hybrid controller which is based on MSDRE (Modified SDRE) and ANFIS (Adaptive Neuro-Fuzzy Inference System) has been proposed by Abdelrahman et al. (2010). We propose a hybrid controller based on SDRE and ANFIS, and apply the hybrid controller to the hardware attitude simulator to perform a HIL (Hardware-In-the-Loop) simulation. Through HIL simulation, it is demonstrated that the hybrid controller satisfies the control requirement and the computation load is reduced significantly. In addition, the effects of statistical properties of the ANFIS training data to the performance of the ANFIS controller have been analyzed.

  • PDF

Heuristic Inference in the Expert System for Autonomous Navigation of AUV (AUV의 자율항행을 위한 전문가시스템에서의 휴리스틱추론기법)

  • 이영일;김창민;김용기
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.155-159
    • /
    • 1999
  • 자율무인잠수정(AUV, Autonomous Underwater Vehicle)이 해저 속에서 주어진 임무(mission)를 수행하는데 있어 가장 먼저 선행되어야 하는 것은 목표점(Goal Position)까지 안전하고 빠르게 항행할 수 있는 자율항행시스템(Autonomous Navigation System) 관련 기술의 개발이다. 이러한 시스템은 IPMS(Integrated Platform Management System)를 기반으로 하여 자율무인잠수정에 자율성을 부여하는 항행전문가시스템(Navigation Expert System)이 결합된 구조이다. 본 논문에서는 IPMS 에 기반한 자율항행시스템의 개념적 구조를 설계하고 항행전문가시스템의 추론방법으로 퍼지관계곱(Fuzzy Relational Products) 기반 평가함수를 이용한 항행 휴리스틱탐색(navigation heuristic search) 기법을 제안한다.

  • PDF

Query Term Expansion and Reweighting using Term Co-Occurrence Similarity and Fuzzy Inference (용어 발생 유사도와 퍼지 추론을 이용한 질의 용어 확장 및 가중치 재산정)

  • Kim, Ju-Yeon;Kim, Byeong-Man
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.9
    • /
    • pp.961-972
    • /
    • 2000
  • 본 논문에서는 사용자의 적합 피드백을 기반으로 적합 문서들에서 발생하는 용어들과 초기 질의어간의 발생 빈도 유사도 및 퍼지 추론을 이용하여 용어의 가중치를 산정하는 방법에 대하여 제안한다. 피드백 문서들에서 발생하는 용어들 중에서 불용어를 제외한 모든 용어들을 질의어로 확장될 수 있는 후보 용어들로 선택하고, 발생 빈도 유사성을 이용한 초기 질의어-후보 용어의 관련 정도, 용어의 IDF, DF 정보를 퍼지 추론에 적용하여 후보 용어의 초기 질의어에 대한 최종적인 관련 정도를 산정 하였으며, 피드백 문서들에서의 가중치와 관련 정도를 결합하여 후보 용어들의 가중치를 산정 하였다. 본 논문에서는 성능을 평가하기 위하여 KT-set 1.0과 KT-set 2.0을 사용하였으며, 성능의 상대적인 평가를 위하여 Dec-Hi 방법, 용어 분포 유사도를 이용한 방법, 퍼지 추론을 이용한 방법들을 정확률-재현률을 사용하여 평가하였다.

  • PDF

Optimal Design of Fuzzy Inference System Based on Information Granulation and Particle Swarm Optimization (IG와 PSO기반 퍼지추론 시스템의 최적 설계)

  • Kim, Wook-Dong;Lee, Dong-Jin;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1865_1866
    • /
    • 2009
  • 본 연구에서는 복잡하고 비선형 시스템의 모델을 동정하기 위해 Information Granulation에 기반한 퍼지추론 시스템의 새로운 범주를 소개한다. Information Granulation은 근접성, 유사성 EH는 기능성 등에 인하여 서로 결합되는 대상(특히, 데이터)의 연결된 모임으로 간주된다. HCM클러스터링에 의한 Information Granulation은 퍼지 규칙의 전반부 및 후반부에서 사용되는 멤버쉽 함수의 초기 정점과 다항식함수의 초기 값과 같은 퍼지 모델의 초기 파라미터를 결정하는데 도움을 준다. 그리고 초기 파라미터는 PSO 알고리즘과 최소자승법에 의해 효과적으로 동조된다. 제안된 모델은 Box와 jenkins가 사용한 가스로 공정[6]을 모델링하여 기존 퍼지 모델링 방법과 비교 평가한다.

  • PDF

Curvature Degree Recognition for an Automatic Driving system by an Approximated Reasoning method (근사추론을 이용한 자동운전 시스템에서의 굴곡 차선 인식 시스템 설계)

  • 조혜경;김영택
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.342-345
    • /
    • 2003
  • 자동운전과 안전운전 구현을 위한 첨단 차량 및 도로 시스템(AVHS : Advanced Vehicle & Highway Systems)의 한 분야인 충돌 방지 시스템을 완성하기 위해서는 차량간의 상대 거리, 차량의 속도, 차선의 굴곡 정도, 경사도등을 사용해서 종합적으로 상황 판단을 내려야 한다. 본 논문에서는 이들 요소들중에서 차선의 굴곡도 판단을 근사 추론을 이용하여 실험하였다. 근사추론을 이용한 것은 차선의 굴곡도를 계산형으로 파악할 때의 단점인 계산 시간 오버헤드(overhead), 또 그에 따른 실시간 처리의 어려움, 고가의 장비필요성 등을 극복하기 위해서이며, 실험은 Fuzzy Logical Inference 기법을 사용하였다. 본 연구에서는 실제 도로상에서의 계산된 굴곡도와 실험된 시스템 결과와의 유사성과 그 시스템의 사용 가용성(feasibility)을 검정하였다.

  • PDF

User Emotion Extraction Engine($E^3$) based on Fuzzy Inference and Bayesian Networks in Smart Phone Environment (스마트폰 환경에서 퍼지 추론과 베이지안 네트워크에 기반한 사용자 감성 추출 엔진)

  • Lee, Seong-Ho;Bang, Jae-Hun;Lee, Sung-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.100-103
    • /
    • 2011
  • 최근 스마트폰의 보급이 일반화되면서 보다 개인화된(Personalized) 서비스를 제공하려는 시도가 다각도로 이루어지고 있다. 이러한 시도 중 하나가 사용자의 감성을 인식하여 보다 효과적인 서비스를 제공하려는 것이다. 본 논문에서는 스마트폰으로부터 얻어낸 위치인식정보와 사용자 정보를 베이지안 네트워크를 활용하여 상황정보를 도출한다. 이 상황정보와 사용자의 선호도 정보를 퍼지 추론을 이용하여 얻은 결과 값을 수정된 Valence-Arousal 모델에 매핑하여 사용자의 감성정보를 추출하는 감성 추출 엔진을 제안한다. 유용성 평가를 위해 현재 상용 중인 스마트폰에 제안하는 감성 추출 엔진을 이용, 사용자 감성을 인식하고 적절한 서비스를 추천하는 애플리케이션을 구현하였다.