• Title/Summary/Keyword: fuzzy inference

Search Result 1,297, Processing Time 0.03 seconds

Hybrid Prediction Model for Self-Healing System (자가치유 시스템을 위한 하이브리드 예측모델)

  • Yoo, Gil-Jong;Park, Jeong-Min;Jung, Chul-Ho;Lee, Eun-Seok
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.381-386
    • /
    • 2006
  • 오늘날 분산 컴퓨팅 환경에서 운용되는 시스템이 증가함에 따라 시스템의 관리작업은 고수준(high-level)의 자동화에 대한 요구가 증가하고 있다. 이에 따라 시스템 관리방식이 전통적인 관리자 중심의 방식에서 시스템 스스로가 자신의 문제를 인식하고 상황을 분석하여 해결하는 자율 컴퓨팅 방식으로 변화하고 있으며, 이에 대한 연구가 많은 연구기관에서 다양한 방법으로 이루어지고 있다. 그러나 이러한 대부분의 기존 연구들은 문제가 발생한 이후의 치유에 주로 초점이 맞추어져 있다. 이러한 문제를 해결하기 위해서는 시스템 스스로가 동작환경을 인식하고 에러의 발생을 예측하기 위한 예측 모델이 필요하다. 따라서 본 논문에서는 자율 컴퓨팅환경에서 자가 치유를 지원하는 4가지의 예측 모델 설계 방법을 제안한다. 본 예측 모델은 ID3 알고리즘, 퍼지 추론, 퍼지 뉴럴 네트워크 그리고 베이지안 네트워크가 각 시스템 상황에 맞춰 적절하게 사용되는 방식이며, 이를 통해 보다 정확한 에러 예측이 가능해진다. 우리는 제안모델의 평가를 위해 본 예측모델을 자가치유 시스템에 적용하여 기존 연구와 예측의 효율을 비교하였으며, 그 결과를 통해 제안 모델의 유효성을 증명하였다.

  • PDF

Effects of infill walls on RC buildings under time history loading using genetic programming and neuro-fuzzy

  • Kose, M. Metin;Kayadelen, Cafer
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.401-419
    • /
    • 2013
  • In this study, the efficiency of adaptive neuro-fuzzy inference system (ANFIS) and genetic expression programming (GEP) in predicting the effects of infill walls on base reactions and roof drift of reinforced concrete frames were investigated. Current standards generally consider weight and fundamental period of structures in predicting base reactions and roof drift of structures by neglecting numbers of floors, bays, shear walls and infilled bays. Number of stories, number of bays in x and y directions, ratio of shear wall areas to the floor area, ratio of bays with infilled walls to total number bays and existence of open story were selected as parameters in GEP and ANFIS modeling. GEP and ANFIS have been widely used as alternative approaches to model complex systems. The effects of these parameters on base reactions and roof drift of RC frames were studied using 3D finite element method on 216 building models. Results obtained from 3D FEM models were used to in training and testing ANFIS and GEP models. In ANFIS and GEP models, number of floors, number of bays, ratio of shear walls and ratio of infilled bays were selected as input parameters, and base reactions and roof drifts were selected as output parameters. Results showed that the ANFIS and GEP models are capable of accurately predicting the base reactions and roof drifts of RC frames used in the training and testing phase of the study. The GEP model results better prediction compared to ANFIS model.

Tuning Method of the Membership Function for FLC using a Gradient Descent Algorithm (Gradient Descent 알고리즘을 이용한 퍼지제어기의 멤버십함수 동조 방법)

  • Choi, Hansoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7277-7282
    • /
    • 2014
  • In this study, the gradient descent algorithm was used for FLC analysis and the algorithm was used to represent the effects of nonlinear parameters, which alter the antecedent and consequence fuzzy variables of FLC. The controller parameters choose the control variable by iteration for gradient descent algorithm. The FLC consists of 7 membership functions, 49 rules and a two inputs - one output system. The system adopted the Min-Max inference method and triangle type membership function with a 13 quantization level.

Intelligent Steering Control System Based on Voice Instructions

  • Seo, Ki-Yeol;Oh, Se-Woong;Suh, Sang-Hyun;Park, Gyei-Kark
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.539-546
    • /
    • 2007
  • The important field of research in ship operation is related to the high efficiency of transportation, the convenience of maneuvering ships and the safety of navigation. For these purposes, many intelligent technologies for ship automation have been required and studied. In this paper, we propose an intelligent voice instruction-based learning (VIBL) method and discuss the building of a ship's steering control system based on this method. The VIBL system concretely consists of two functions: a text conversion function where an instructor's inputted voice is recognized and converted to text, and a linguistic instruction based learning function where the text instruction is understood through a searching process of given meaning elements. As a study method, the fuzzy theory is adopted to build maneuvering models of steersmen and then the existing LIBL is improved and combined with the voice recognition technology to propose the VIBL. The ship steering control system combined with VIBL is tested in a ship maneuvering simulator and its validity is shown.

A Study on the Load Frequency Control of Two-Area Power System using ANFIS Precompensated PID Controller (ANFIS 전 보상 PID 제어기에 의한 2지역 전력계통의 부하주파수 제어에 관한 연구)

  • Chung, Mun-Kyu;Chung, Kyeong-Hwan;Joo, Seok-Min;An, Byung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1314-1317
    • /
    • 1999
  • In this paper, we design an Adaptive Neuro-Fuzzy Inference System(ANFIS) Precompensator for the performance improvement of conventional proportional integral derivative (PID) controller that the governor system of power plant constantly maintains the load frequency of two-area power system. The ANFIS Precompensator is expressed as the membership functions of premise parameters and the linear combination of consequent parameters by Sugeno's fuzzy if-then rules using nonlinear input-output relation for the set point automatic modification maintaining conventional PID controller. The proposed compensation design technique is hoped to be satisfactory method overcome difficulty of exact modelling and arising problems by the complex nonlinearities of power system, and our design shows merit that is easily implemented by adding an ANFIS precompenastor to an existing PID controller without replacement.

  • PDF

Performance Improvement of Controller using Fuzzy Inference Results of System Output (시스템 출력의 퍼지추론결과를 이용한 제어기의 성능 개선)

  • 이우영;최홍문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.77-86
    • /
    • 1995
  • The new architecture that fuzzy logic control(FLC) with difficulties for tuning membership function (MF) is parallel with neural networks(NN) to be learned from the output of FLC is proposed. Therefore proposed scheme has the characteristics to utilize the expert knowledge in design process, to be learned during the operation without any learning mode. In this architecture, the function of the FLC is to supply the sliding surface which is constructed on the phase plane by rule base for giving the desired control characteristics and learning criterion of NN and the stabilization of the control performance before NN is learned, The function of the NN is to let the system trajectory be tracked to the sliding surface and reached to the stable point.

  • PDF

Compressive strength estimation of concrete containing zeolite and diatomite: An expert system implementation

  • Ozcan, Giyasettin;Kocak, Yilmaz;Gulbandilar, Eyyup
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.21-30
    • /
    • 2018
  • In this study, we analyze the behavior of concrete which contains zeolite and diatomite. In order to achieve the goal, we utilize expert system methods. The utilized methods are artificial neural network and adaptive network-based fuzzy inference systems. In this respect, we exploit seven different mixes of concrete. The concrete mixes contain zeolite, diatomite, mixture of zeolite and diatomite. All seven concrete mixes are exposed to 28, 56 and 90 days' compressive strength experiments with 63 specimens. The results of the compressive strength experiments are used as input data during the training and testing of expert system methods. In terms of artificial neural network and adaptive network-based fuzzy models, data format comprises seven input parameters, which are; the age of samples (days), amount of Portland cement, zeolite, diatomite, aggregate, water and hyper plasticizer. On the other hand, the output parameter is defined as the compressive strength of concrete. In the models, training and testing results have concluded that both expert system model yield thrilling medium to predict the compressive strength of concrete containing zeolite and diatomite.

Development of Diagnosis of Trouble Model for Effective Operation of Air-compressor (효율적인 공기압축기 운영을 위한 이상진단모델 연구)

  • Im, Sang Don;Jung, Young Deuk;Kim, Jong Rae
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.239-248
    • /
    • 2014
  • Most systems used in industrial sites, actually have non-linearity and uncertainty. Therefore there are a lot of difficulties in evaluating conditions of these systems. Generally, the quantitative analysis and expression are found hard because the general public cannot easily make an accurate interpretation on the systems. Thus development of a system that utilizes an expertise from skilled analysts is required. In this research, a real-time sensor signal conditioning system and Fuzzy-expert system have been separately set up into an inference algorithm. So that it ensures a fast, accurate, objective and quantitative operational condition value provided to the manager. Therefore, FE_AFCDM is suggested in this literature, as an effective system for diagnosing the problems related to the air compressor. It can quantify the uncertain and absurd condition to operate the air compressor facilities safely and financially.

A Genetic Algorithm-based Construction Mechanism for FCM and Its Empirical Analysis of Decision Support Performance : Emphasis on Solving Corporate Software Sales Problem (유전자 알고리즘을 이용한 퍼지인식도 생성 메커니즘의 의사결정 효과성에 관한 실증연구 : 기업용 소프트웨어 판매 문제를 중심으로)

  • Chung, Nam-Ho;Lee, Nam-Ho;Lee, Kun-Chang
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.157-176
    • /
    • 2007
  • Fuzzy cognitive map(FCM) has long been used as an effective way of constructing the human's decision making process explicitly. By taking advantage of this feature, FCM has been extensively used in providing what-if solutions to a wide variety of business decision making problems. In contrast, the goal-seeking analysis mechanism by using the FCM is rarely observed in literature, which remains a research void in the fields of FCM. In this sense, this study proposes a new type of the FCM-based goal-seeking analysis which is based on utilizing the genetic algorithm. Its main recipe lies in the fact that the what-if analysis as well as goal-seeking analysis are enabled very effectively by incorporating the genetic algorithm into the FCM-driven inference process. To prove the empirical validity of the proposed approach, valid questionnaires were gathered from a number of experts on software sales, and analyzed statistically. Results showed that the proposed approach is robust and significant.

An Integrated Fault Diagnosis System for Power System Devices using Meta-inference and Fuzzy Reasoning (메타-인퍼런스와 퍼지추론을 이용한 송변전 설비의 통합 고장진단 전문가 시스템)

  • 이흥재;임찬호;김광원
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.2
    • /
    • pp.38-44
    • /
    • 1998
  • This paper presents an integrated fault diagnosis expert system to assist SCADA operators in local control centers which controls unmanned distribution substations in a power system. The proposed system diagnoses various faults occurred in both substation devices and transmission devices. The system can be easily installed without disturbing main SCADA system. The system simply shares the dynamic information including alarms with main SCADA using dual data link interface. And the proposed expert system utilizes the fuzzy reasoning process in order to consider the uncertainty factor. The system is developed using a low cost personal computer owing to the special modular programming and the meta-inf!'lrence structure. Case studies showed a promising possibility.bility.

  • PDF