오늘날 분산 컴퓨팅 환경에서 운용되는 시스템이 증가함에 따라 시스템의 관리작업은 고수준(high-level)의 자동화에 대한 요구가 증가하고 있다. 이에 따라 시스템 관리방식이 전통적인 관리자 중심의 방식에서 시스템 스스로가 자신의 문제를 인식하고 상황을 분석하여 해결하는 자율 컴퓨팅 방식으로 변화하고 있으며, 이에 대한 연구가 많은 연구기관에서 다양한 방법으로 이루어지고 있다. 그러나 이러한 대부분의 기존 연구들은 문제가 발생한 이후의 치유에 주로 초점이 맞추어져 있다. 이러한 문제를 해결하기 위해서는 시스템 스스로가 동작환경을 인식하고 에러의 발생을 예측하기 위한 예측 모델이 필요하다. 따라서 본 논문에서는 자율 컴퓨팅환경에서 자가 치유를 지원하는 4가지의 예측 모델 설계 방법을 제안한다. 본 예측 모델은 ID3 알고리즘, 퍼지 추론, 퍼지 뉴럴 네트워크 그리고 베이지안 네트워크가 각 시스템 상황에 맞춰 적절하게 사용되는 방식이며, 이를 통해 보다 정확한 에러 예측이 가능해진다. 우리는 제안모델의 평가를 위해 본 예측모델을 자가치유 시스템에 적용하여 기존 연구와 예측의 효율을 비교하였으며, 그 결과를 통해 제안 모델의 유효성을 증명하였다.
In this study, the efficiency of adaptive neuro-fuzzy inference system (ANFIS) and genetic expression programming (GEP) in predicting the effects of infill walls on base reactions and roof drift of reinforced concrete frames were investigated. Current standards generally consider weight and fundamental period of structures in predicting base reactions and roof drift of structures by neglecting numbers of floors, bays, shear walls and infilled bays. Number of stories, number of bays in x and y directions, ratio of shear wall areas to the floor area, ratio of bays with infilled walls to total number bays and existence of open story were selected as parameters in GEP and ANFIS modeling. GEP and ANFIS have been widely used as alternative approaches to model complex systems. The effects of these parameters on base reactions and roof drift of RC frames were studied using 3D finite element method on 216 building models. Results obtained from 3D FEM models were used to in training and testing ANFIS and GEP models. In ANFIS and GEP models, number of floors, number of bays, ratio of shear walls and ratio of infilled bays were selected as input parameters, and base reactions and roof drifts were selected as output parameters. Results showed that the ANFIS and GEP models are capable of accurately predicting the base reactions and roof drifts of RC frames used in the training and testing phase of the study. The GEP model results better prediction compared to ANFIS model.
Journal of the Korea Academia-Industrial cooperation Society
/
v.15
no.12
/
pp.7277-7282
/
2014
In this study, the gradient descent algorithm was used for FLC analysis and the algorithm was used to represent the effects of nonlinear parameters, which alter the antecedent and consequence fuzzy variables of FLC. The controller parameters choose the control variable by iteration for gradient descent algorithm. The FLC consists of 7 membership functions, 49 rules and a two inputs - one output system. The system adopted the Min-Max inference method and triangle type membership function with a 13 quantization level.
Seo, Ki-Yeol;Oh, Se-Woong;Suh, Sang-Hyun;Park, Gyei-Kark
International Journal of Control, Automation, and Systems
/
v.5
no.5
/
pp.539-546
/
2007
The important field of research in ship operation is related to the high efficiency of transportation, the convenience of maneuvering ships and the safety of navigation. For these purposes, many intelligent technologies for ship automation have been required and studied. In this paper, we propose an intelligent voice instruction-based learning (VIBL) method and discuss the building of a ship's steering control system based on this method. The VIBL system concretely consists of two functions: a text conversion function where an instructor's inputted voice is recognized and converted to text, and a linguistic instruction based learning function where the text instruction is understood through a searching process of given meaning elements. As a study method, the fuzzy theory is adopted to build maneuvering models of steersmen and then the existing LIBL is improved and combined with the voice recognition technology to propose the VIBL. The ship steering control system combined with VIBL is tested in a ship maneuvering simulator and its validity is shown.
In this paper, we design an Adaptive Neuro-Fuzzy Inference System(ANFIS) Precompensator for the performance improvement of conventional proportional integral derivative (PID) controller that the governor system of power plant constantly maintains the load frequency of two-area power system. The ANFIS Precompensator is expressed as the membership functions of premise parameters and the linear combination of consequent parameters by Sugeno's fuzzy if-then rules using nonlinear input-output relation for the set point automatic modification maintaining conventional PID controller. The proposed compensation design technique is hoped to be satisfactory method overcome difficulty of exact modelling and arising problems by the complex nonlinearities of power system, and our design shows merit that is easily implemented by adding an ANFIS precompenastor to an existing PID controller without replacement.
Journal of the Korean Institute of Intelligent Systems
/
v.5
no.4
/
pp.77-86
/
1995
The new architecture that fuzzy logic control(FLC) with difficulties for tuning membership function
(MF) is parallel with neural networks(NN) to be learned from the output of FLC is proposed.
Therefore proposed scheme has the characteristics to utilize the expert knowledge in design process, to
be learned during the operation without any learning mode.
In this architecture, the function of the FLC is to supply the sliding surface which is constructed on the
phase plane by rule base for giving the desired control characteristics and learning criterion of NN and the
stabilization of the control performance before NN is learned, The function of the NN is to let the system
trajectory be tracked to the sliding surface and reached to the stable point.
In this study, we analyze the behavior of concrete which contains zeolite and diatomite. In order to achieve the goal, we utilize expert system methods. The utilized methods are artificial neural network and adaptive network-based fuzzy inference systems. In this respect, we exploit seven different mixes of concrete. The concrete mixes contain zeolite, diatomite, mixture of zeolite and diatomite. All seven concrete mixes are exposed to 28, 56 and 90 days' compressive strength experiments with 63 specimens. The results of the compressive strength experiments are used as input data during the training and testing of expert system methods. In terms of artificial neural network and adaptive network-based fuzzy models, data format comprises seven input parameters, which are; the age of samples (days), amount of Portland cement, zeolite, diatomite, aggregate, water and hyper plasticizer. On the other hand, the output parameter is defined as the compressive strength of concrete. In the models, training and testing results have concluded that both expert system model yield thrilling medium to predict the compressive strength of concrete containing zeolite and diatomite.
Most systems used in industrial sites, actually have non-linearity and uncertainty. Therefore there are a lot of difficulties in evaluating conditions of these systems. Generally, the quantitative analysis and expression are found hard because the general public cannot easily make an accurate interpretation on the systems. Thus development of a system that utilizes an expertise from skilled analysts is required. In this research, a real-time sensor signal conditioning system and Fuzzy-expert system have been separately set up into an inference algorithm. So that it ensures a fast, accurate, objective and quantitative operational condition value provided to the manager. Therefore, FE_AFCDM is suggested in this literature, as an effective system for diagnosing the problems related to the air compressor. It can quantify the uncertain and absurd condition to operate the air compressor facilities safely and financially.
Fuzzy cognitive map(FCM) has long been used as an effective way of constructing the human's decision making process explicitly. By taking advantage of this feature, FCM has been extensively used in providing what-if solutions to a wide variety of business decision making problems. In contrast, the goal-seeking analysis mechanism by using the FCM is rarely observed in literature, which remains a research void in the fields of FCM. In this sense, this study proposes a new type of the FCM-based goal-seeking analysis which is based on utilizing the genetic algorithm. Its main recipe lies in the fact that the what-if analysis as well as goal-seeking analysis are enabled very effectively by incorporating the genetic algorithm into the FCM-driven inference process. To prove the empirical validity of the proposed approach, valid questionnaires were gathered from a number of experts on software sales, and analyzed statistically. Results showed that the proposed approach is robust and significant.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.12
no.2
/
pp.38-44
/
1998
This paper presents an integrated fault diagnosis expert system to assist SCADA operators in local control centers which controls unmanned distribution substations in a power system. The proposed system diagnoses various faults occurred in both substation devices and transmission devices. The system can be easily installed without disturbing main SCADA system. The system simply shares the dynamic information including alarms with main SCADA using dual data link interface. And the proposed expert system utilizes the fuzzy reasoning process in order to consider the uncertainty factor. The system is developed using a low cost personal computer owing to the special modular programming and the meta-inf!'lrence structure. Case studies showed a promising possibility.bility.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.