• Title/Summary/Keyword: fuzzy inference

Search Result 1,297, Processing Time 0.027 seconds

Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA (퍼지 RBFNNs와 증분형 주성분 분석법으로 실현된 숫자 인식 시스템의 설계)

  • Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • In this study, we introduce a design of Fuzzy RBFNNs-based digit recognition system using the incremental-PCA in order to recognize the handwritten digits. The Principal Component Analysis (PCA) is a widely-adopted dimensional reduction algorithm, but it needs high computing overhead for feature extraction in case of using high dimensional images or a large amount of training data. To alleviate such problem, the incremental-PCA is proposed for the computationally efficient processing as well as the incremental learning of high dimensional data in the feature extraction stage. The architecture of Fuzzy Radial Basis Function Neural Networks (RBFNN) consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means (FCM) algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, connection weights are used as the extended diverse types in polynomial expression such as constant, linear, quadratic and modified quadratic. Experimental results conducted on the benchmarking MNIST handwritten digit database demonstrate the effectiveness and efficiency of the proposed digit recognition system when compared with other studies.

On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network (퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발)

  • 김용호;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.52-64
    • /
    • 1995
  • Robot manipulator is a highly nonlinear-time varying system. Therefore, a lot of control theory has been applied to the system. Robot manipulator has two types of control; one is path planning, another is path tracking. In this paper, we select the path tracking, and for this purpose, propose the intelligent control¬ler which is combined with fuzzy logic and neural network. The fuzzy logic provides an inference morphorlogy that enables approximate human reasoning to apply to knowledge-based systems, and also provides a mathematical strength to capture the uncertainties associated with human cognitive processes like thinking and reasoning. Based on this fuzzy logic, the fuzzy logic controller(FLC) provides a means of converhng a linguistic control strategy based on expert knowledge into automahc control strategy. But the construction of rule-base for a nonlinear hme-varying system such as robot, becomes much more com¬plicated because of model uncertainty and parameter variations. To cope with these problems, a auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), that is known to be very effective in the optimization problem, will be proposed. The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

Design and Evaluation of a Fuzzy Logic based Multi-hop Broadcast Algorithm for IoT Applications (IoT 응용을 위한 퍼지 논리 기반 멀티홉 방송 알고리즘의 설계 및 평가)

  • Bae, Ihn-han;Kim, Chil-hwa;Noh, Heung-tae
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.17-23
    • /
    • 2016
  • In the future network such as Internet of Things (IoT), the number of computing devices are expected to grow exponentially, and each of the things communicates with the others and acquires information by itself. Due to the growing interest in IoT applications, the broadcasting in Opportunistic ad-hoc networks such as Machine-to-Machine (M2M) is very important transmission strategy which allows fast data dissemination. In distributed networks for IoT, the energy efficiency of the nodes is a key factor in the network performance. In this paper, we propose a fuzzy logic based probabilistic multi-hop broadcast (FPMCAST) algorithm which statistically disseminates data accordingly to the remaining energy rate, the replication density rate of sending node, and the distance rate between sending and receiving nodes. In proposed FPMCAST, the inference engine is based the fuzzy rule base which is consists of 27 if-then rules. It maps input and output parameters to membership functions of input and output. The output of fuzzy system defines the fuzzy sets for rebroadcasting probability, and defuzzification is used to extract a numeric result from the fuzzy set. Here Center of Gravity (COG) method is used to defuzzify the fuzzy set. Then, the performance of FPMCAST is evaluated through a simulation study. From the simulation, we demonstrate that the proposed FPMCAST algorithm significantly outperforms flooding and gossiping algorithms. Specially, the FPMCAST algorithm has longer network lifetime because the residual energy of each node consumes evenly.

The Application of Adaptive Network-based Fuzzy Inference System (ANFIS) for Modeling the Hourly Runoff in the Gapcheon Watershed (적응형 네트워크 기반 퍼지추론 시스템을 적용한 갑천유역의 홍수유출 모델링)

  • Kim, Ho Jun;Chung, Gunhui;Lee, Do-Hun;Lee, Eun Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.405-414
    • /
    • 2011
  • The adaptive network-based fuzzy inference system (ANFIS) which had a success for time series prediction and system control was applied for modeling the hourly runoff in the Gapcheon watershed. The ANFIS used the antecedent rainfall and runoff as the input. The ANFIS was trained by varying the various simulation factors such as mean areal rainfall estimation, the number of input variables, the type of membership function and the number of membership function. The root mean square error (RMSE), mean peak runoff error (PE), and mean peak time error (TE) were used for validating the ANFIS simulation. The ANFIS predicted runoff was in good agreement with the measured runoff and the applicability of ANFIS for modelling the hourly runoff appeared to be good. The forecasting ability of ANFIS up to the maximum 8 lead hour was investigated by applying the different input structure to ANFIS model. The accuracy of ANFIS for predicting the hourly runoff was reduced as the forecasting lead hours increased. The long-term predictability of ANFIS for forecasting the hourly runoff at longer lead hours appeared to be limited. The ANFIS might be useful for modeling the hourly runoff and has an advantage over the physically based models because the model construction of ANFIS based on only input and output data is relatively simple.

A Study for Autonomous Intelligence of Computer-Generated Forces (가상군(Computer-Generated Forces)의 자율지능화 방안 연구)

  • Han, Chang-Hee;Cho, Jun-Ho;Lee, Sung-Ki
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • Modeling and Simulation(M&S) technology gets an attention from various parts such as industry and military. Especially, military uses the technology to cope with a different situation from the one in the Cold War and maximize the effect of training against the cost in the new environment. In order for the training based on M&S technology to be effective, the situations of a battlefield and a combat must be more realistically simulated. For this, a technique development on Computer-Generated Forces(CGF) which represents a unit's simulation logic and a human's simulated behaviors is focused. The CGF simulating a human's behaviors can be used in representing an enemy force, experimenting behaviors in a future war, and developing a new combat idea. This paper describes a methodology to accomplish Computer-Generated Forces' autonomous intelligence. It explains the process of applying a task behavior list based on the METT+T element onto CGFs. On the other hand, in the domain knowledge of military field manual, fuzzy facts such as "fast" and "sufficient" whose real values should be decided by domain experts can be easily found. In order to efficiently implement military simulation logics involved with such subjectivity, using a fuzzy inference methodology can be effective. In this study, a fuzzy inference methodology is also applied.

Estimation of the Marginal Walking Time of Bus Users in Small-Medium Cities (중·소도시 버스이용자의 한계도보시간 추정)

  • Kim, Kyung Whan;Yoo, Hwan Hee;Lee, Sang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.451-457
    • /
    • 2008
  • Establishing realistic bus service coverage is needed to build optimum city bus line networks and reasonable bus service coverage areas. The purposes of this study are understanding the characteristics of the present walking time and marginal walking time of small-medium cities and constructing an ANFIS (Adaptive Neuro-Fuzzy Inference System) model to estimate the marginal walking time for certain age and income. The cities of Masan, Chongwon and Jinju are selected for study cities. The 80 percentile of present walking time of bus users of these cities are 10.2-11.1 minutes, thus the values are greater than the 5 minutes of the maximum walking time in USA and the marginal walking times of 21.1-21.8 minutes are much greater. An ANFIS model based on pulled data of the cities are constructed to estimate the marginal walking time of small-medium cities. Analyzing the relationship between marginal walking time and age/income by using the model, the marginal walking time decreases as the age increases, but is near constant from the age of 25 to 35. And the marginal walking time is inversely proportional to the income. In comparing the surveyed and the estimated values, as the statistics of coefficient of determination, MSE and MAE are 0.996, 0.163, 0.333 respectively, it may be judged that the explainability of the model is very high. The technique developed in this study can be applied to other cities.

Discriminant analysis based on a calibration model (Calibration 모형을 이용한 판별분석)

  • 이석훈;박래현;복혜영
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.2
    • /
    • pp.261-274
    • /
    • 1997
  • Most of the data sets to which the conventional discriminant rules have been applied contain only those which belong to one and only one class among the classes of interest. However the extension of the bivalence to multivlaence like Fuzzy concepts strongly influence the traditional view that an object must belong to only class. Thus the goal of this paper is to develop new discriminant rules which can handle the data each object of which may belong to moer than two classes with certain degrees of belongings. A calibration model is used for the relationship between the feature vector of an object and the degree of belongings and a Bayesian inference is made with the Metropolis algorithm on the degree of belongings when a feature vector of an object whose membership is unknown is given. An evalution criterion is suggested for the rules developed in this paper and comparision study is carried using two training data sets.

  • PDF

PDA-based Supervisory Control of Mobile Robot (PDA를 이용한 이동로봇 제어)

  • Kim, Seong-Joo;Jung, Sung-Ho;Kim, Yong-Taek;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.379-384
    • /
    • 2002
  • This paper represents the mobile robot system remote controlled by PDA(personal digital assistance). So far, owing to the development of internet technologies, lots of remote control methods through internet have been proposed. To control a mobile robot through internet and guide it under unknown environment, We propose a control method activated by PDA. In a proposed system, PDA acts as a user interface to communicate with notebook as a controller of the mobile robot system using TCP/IP protocol, and the notebook controls the mobile robot system. The information about the direction and velocity of the mobile robot feedbacks to the PDA and the PDA send new control method produced from the fuzzy inference engine.

Fuzzy Decision based on Motion Characteristics (동작특징에 대한 퍼지추론)

  • 박세진;김경수;최형일
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.9-17
    • /
    • 1997
  • This paper describes a monitoring system that examines water quality by analyzing behavioral patterns of fishes. The water quality inspection system (WQIS) captures color images of fishes with a CCD camera, extracts out fish regions from the images, and determines motion characteristics of fishes by computing consecutive frames. We define five types of measures that reflect behavioral patterns of fishes : floatness, fledness, clustemess, diffusiveness, and mobility. These measures are utilized when the system performs fuzzy inference to induce the conclusion about water quality. We believe that the proposed system can be a solution for securing clean water.

  • PDF

Application of ANFIS for Prediction of Daily Water Supply (상수도 1일 급수량 예측을 위한 ANFIS적용)

  • Rhee, Kyoung-Hoon;Kang, Il-Hwan;Moon, Byoung-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.281-290
    • /
    • 2000
  • This study investigates the prediction of daily water supply, which is a necessary for the efficient management of water distribution system. ANFIS, namely artificial intelligence, is a neural network into which fuzzy information is inputted and then processed. In this study, daily water supply was predicted through an application of network-based fuzzy inference system(ANFIS) for daily water supply prediction. This study was investigated methods for predicting water supply based on data about the amount of water which supplied in Kwangju city. For variables choice, four analyses of input data were conducted: correlation analysis, autocorrelation analysis, partial autocorrelation analysis, and cross-correlation analysis. Input variables were (a) the amount of water supply, (b) the mean temperature, and (c) the population of the area supplied with water. Variables were combined in an integrated model. Data of the amount of daily water supply only was modelled and its validity was verified in the case that the meteorological office of weather forecast is not always reliable. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 18.46% and the average error was lower than 2.36%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

  • PDF