• 제목/요약/키워드: fuzzy hybrid control

검색결과 246건 처리시간 0.03초

Design and evaluation of an alert message dissemination algorithm using fuzzy logic for VANETs

  • Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권4호
    • /
    • pp.783-793
    • /
    • 2010
  • Several multi-hop applications developed for vehicular ad hoc networks use broadcast as a means to either discover nearby neighbors or propagate useful traffic information to other vehicles located within a certain geographical area. However, the conventional broadcast mechanism may lead to the so-called broadcast storm problem, a scenario in which there is a high level of contention and collisions at the link layer due to an excessive number of broadcast packets. We present a fuzzy alert message dissemination algorithm to improve performance for road safety alert application in Vehicular Ad-hoc Network (VANET). In the proposed algorithm, when a vehicle receives an alert message for the first time, the vehicle rebroadcasts the alert message according to the fuzzy control rules for rebroadcast degree, where the rebroadcast degree depends on the current traffic density of the road and the distance between source vehicle and destination vehicle. Also, the proposed algorithm is the hybrid algorithm that uses broadcast protocol together with token protocol according to traffic density. The performance of the proposed algorithm is evaluated through simulation and compared with that of other alert message dissemination algorithms.

적응퍼지-뉴럴네트워크를 이용한 비선형 공정의 온-라인 모델링 (on-line Modeling of Nonlinear Process Systems using the Adaptive Fuzzy-neural Networks)

  • 오성권;박병준;박춘성
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1293-1302
    • /
    • 1999
  • In this paper, an on-line process scheme is presented for implementation of a intelligent on-line modeling of nonlinear complex system. The proposed on-line process scheme is composed of FNN-based model algorithm and PLC-based simulator, Here, an adaptive fuzzy-neural networks and HCM(Hard C-Means) clustering method are used as an intelligent identification algorithm for on-line modeling. The adaptive fuzzy-neural networks consists of two distinct modifiable sturctures such as the premise and the consequence part. The parameters of two structures are adapted by a combined hybrid learning algorithm of gradient decent method and least square method. Also we design an interface S/W between PLC(Proguammable Logic Controller) and main PC computer, and construct a monitoring and control simulator for real process system. Accordingly the on-line identification algorithm and interface S/W are used to obtain the on-line FNN model structure and to accomplish the on-line modeling. And using some I/O data gathered partly in the field(plant), computer simulation is carried out to evaluate the performance of FNN model structure generated by the on-line identification algorithm. This simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF

유전과 기울기 최적화기법을 이용한 퍼지 파라메터의 자동 생성 (Automatic generation of Fuzzy Parameters Using Genetic and gradient Optimization Techniques)

  • 유동완;라경택;전순용;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.515-518
    • /
    • 1998
  • This paper proposes a new hybrid algorithm for auto-tuning fuzzy controllers improving the performance. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controllers, using a genetic-MGM algorithm. The object of the proposed algorithm is to promote search efficiency by a genetic and modified gradient optimization techniques. The proposed genetic and MGM algorithm is based on both the standard genetic algorithm and a gradient method. If a maximum point don't be changed around an optimal value at the end of performance during given generation, the genetic-MGM algorithm searches for an optimal value using the initial value which has maximum point by converting the genetic algorithms into the MGM(Modified Gradient Method) algorithms that reduced the number of variables. Using this algorithm is not only that the computing time is faster than genetic algorithm as reducing the number of variables, but also that can overcome the disadvantage of genetic algorithms. Simulation results verify the validity of the presented method.

  • PDF

진공압을 이용한 한방 하이브리드 멀티 전동 부항 콘텐츠에 관한 연구 (A Study on Oriental Medicine Hybrid Multi-cup Electric Cupping Contents using Vacuum Pressure)

  • 김종찬;위통순;고재섭;최흥국;탁명자;김치용
    • 한국멀티미디어학회논문지
    • /
    • 제17권11호
    • /
    • pp.1363-1373
    • /
    • 2014
  • In this study, a hybrid multi-cup electric cupping system (HMECS) was proposed, based on the ancient cupping method. HMECS consisted of several cups that could be used simultaneously to treat different areas of the patient's body. Each cup was equipped with its own pump and pressure-monitoring system. Moreover, the vacuum pressure of the cups was controlled using fuzzy logic. Through automated control of the vacuum pressure, long-term relief of muscle tightness was achieved. To develop a scientific foundation for this alternative treatment, we compared the VAS(Visual Analog Scale) and ODI(Oswestry Disability Index) scores from conventional basic cupping to the VAS and ODI scores for our proposed HMECS. The improvement rate in the VAS and ODI scores using HMECS after three treatments was higher than that achieved by basic cupping. These results, combined with the convenience offered by enhanced IT capabilities, should increase the popularity of this device among an aging society, and facilitate the opportunity to further explore the potential of Oriental medical practices.

비선형 시스템의 안정을 위한 HRIV 방법의 제안 (Hybrid Rule-Interval Variation(HRIV) Method for Stabilization a Class of Nonlinear Systems)

  • Myung, Hwan-Chun;Z. Zenn Bien
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.249-255
    • /
    • 2000
  • HRIV(Hybrid Rule-Interval Variation) method is presented to stabilize a class of nonlinear systems, where SMC(Sliding Mode Control) and ADC (ADaptive Control) schemes are incorporated to overcome the unstable characteristics of a conventional FLC(Fuzzy Logic Control). HRIV method consists of two modes: I-mode (Integral Sliding Mode PLC) and R-mode(RIV method). In I-mode, SMC is used to compensate for MAE(Minimum Approximation Error) caused by the heuristic characteristics of FLC. In R-mode, RIV method reduces interval lengths of rules as states converge to an equilibrium point, which makes the defined Lyapunov function candidate negative semi-definite without considering MAE, and the new uncertain parameters generated in R-mode are compensated by SMC. In RIV method, the overcontraction problem that the states are out of a rule-table can happen by the excessive reduction of rule intervals, which is solved with a dynamic modification of rule-intervals and a transition to I-mode. Especially, HRIV method has advantages to use the analytic upper bound of MAE and to reduce Its effect in the control input, compared with the previous researches. Finally, the proposed method is applied to stabilize a simple nonlinear system and a modified inverted pendulum system in simulation experiments.

  • PDF

A Hybrid Modeling Architecture; Self-organizing Neuro-fuzzy Networks

  • Park, Byoungjun;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.102.1-102
    • /
    • 2002
  • In this paper, we propose Self-organizing neurofuzzy networks(SONFN) and discuss their comprehensive design methodology. The proposed SONFN is generated from the mutually combined structure of both neurofuzzy networks (NFN) and polynomial neural networks(PNN) for model identification of complex and nonlinear systems. NFN contributes to the formation of the premise part of the SONFN. The consequence part of the SONFN is designed using PNN. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. We discuss two kinds of SONFN architectures and propose a comprehensive learning algorithm. It is shown that this network...

  • PDF

Power Quality Improvement Using Hybrid Passive Filter Configuration for Wind Energy Systems

  • Kececioglu, O. Fatih;Acikgoz, Hakan;Yildiz, Ceyhun;Gani, Ahmet;Sekkeli, Mustafa
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.207-216
    • /
    • 2017
  • Wind energy conversion systems (WECS) which consist of wind turbines with permanent magnet synchronous generator (PMSG) and full-power converters have become widespread in the field of renewable power systems. Generally, conventional diode bridge rectifiers have used to obtain a constant DC bus voltage from output of PMSG based wind generator. In recent years, together advanced power electronics technology, Pulse Width Modulation (PWM) rectifiers have used in WECS. PWM rectifiers are used in many applications thanks to their characteristics such as high power factor and low harmonic distortion. In general, L, LC and LCL-type filter configurations are used in these rectifiers. These filter configurations are not exactly compensate current and voltage harmonics. This study proposes a hybrid passive filter configuration for PWM rectifiers instead of existing filters. The performance of hybrid passive filter was tested via MATLAB/Simulink environment under various operational conditions and was compared with LCL filter structure. In addition, neuro-fuzzy controller (NFC) was preferred to increase the performance of PWM rectifier in DC bus voltage control against disturbances because of its robust and nonlinear structure. The study demonstrates that the hybrid passive filter configuration proposed in this study successfully compensates current and voltage harmonics, and improves total harmonic distortion and true power factor.

Neural Network Modeling of PECVD SiN Films and Its Optimization Using Genetic Algorithms

  • Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.87-94
    • /
    • 2001
  • Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.

  • PDF

IPMSM 드라이브의 성능 향상을 위한 하이브리드 PI 제어기 (Hybrid PI Controller for Performance Improvement of IPMSM Drive)

  • 남수명;이정철;이홍균;최정식;고재섭;박기태;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.191-193
    • /
    • 2005
  • This paper presents Hybrid PI controller of IPMSM drive using fuzzy adaptive mechanism(FAM) control. To increase the robustness, fixed gam PI controller, Hybrid PI controller proposes a new method based self tuning PI controller. Hybrid PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

유도전동기 드라이브를 위한 하이브리드 인공지능 제어기의 개발 (Development of Hybrid Artificial Intelligent Controller for Induction Motor Drive)

  • 고재섭;이정철;이홍균;남수명;최정식;박병상;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.188-190
    • /
    • 2005
  • This paper is proposed HAI controller for high performance of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. The control performance of the HAI controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF