• 제목/요약/키워드: fuzzy event

검색결과 87건 처리시간 0.03초

피해이력 및 유역특성을 고려한 도시침수 위험기준 설정 및 적용 (Development and application of urban flood alert criteria considering damage records and runoff characteristics)

  • 조재웅;배창연;강호선
    • 한국수자원학회논문집
    • /
    • 제51권1호
    • /
    • pp.1-10
    • /
    • 2018
  • 최근 집중호우로 서울 강남구('12), 부산('13), 울산('16), 인천, 부산('17) 등 대도시 지역의 침수 피해가 증가하고 있다. 도시침수는 하천유역의 홍수 피해와는 달리 매우 짧은 시간에 피해가 발생하며, 시설물의 파괴보다는 주택, 차량, 상가 침수로 인한 재산 피해가 높은 비율을 차지하고 있다. 현재 우리나라의 호우에 대한 예 경보는 기상청에서 발표하는 호우 주의보 및 경보에 의존하고 있지만, 기상청의 호우 주의보 및 경보는 전국 공통 지표를 사용함으로써 지역적 특성을 반영하지 못하고 있는 실정이다. 따라서 본 연구에서는 서울과 울산지역을 대상으로 지역별로 피해이력기반의 한계강우량을 추정하였으며, 피해이력이 없어 한계강우량 추정이 불가능한 지역에 대해서는 유역특성이 반영된 Neuro-Fuzzy 모형을 통해 한계강우량을 예측하였다. 추정된 한계강우량을 통해 도시침수 위험기준을 설정하고 실제 침수사상에 적용한 결과 추정된 한계강우량은 실제 한계강우량과 1.8~20.4%의 오차를 보이고 있으며, 최소 28분에서 최대 70분의 대피시간을 확보 할 수 있는 것으로 나타났다. 따라서 도시침수 예 경보를 위한 위험기준으로 활용가능 할 것으로 판단된다.

A Suggestion for Data Assimilation Method of Hydrometeor Types Estimated from the Polarimetric Radar Observation

  • Yamaguchi, Kosei;Nakakita, Eiichi;Sumida, Yasuhiko
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.2161-2166
    • /
    • 2009
  • It is important for 0-6 hour nowcasting to provide for a high-quality initial condition in a meso-scale atmospheric model by a data assimilation of several observation data. The polarimetric radar data is expected to be assimilated into the forecast model, because the radar has a possibility of measurements of the types, the shapes, and the size distributions of hydrometeors. In this paper, an impact on rainfall prediction of the data assimilation of hydrometeor types (i.e. raindrop, graupel, snowflake, etc.) is evaluated. The observed information of hydrometeor types is estimated using the fuzzy logic algorism. As an implementation, the cloud-resolving nonhydrostatic atmospheric model, CReSS, which has detail microphysical processes, is employed as a forecast model. The local ensemble transform Kalman filter, LETKF, is used as a data assimilation method, which uses an ensemble of short-term forecasts to estimate the flowdependent background error covariance required in data assimilation. A heavy rainfall event occurred in Okinawa in 2008 is chosen as an application. As a result, the rainfall prediction accuracy in the assimilation case of both hydrometeor types and the Doppler velocity and the radar echo is improved by a comparison of the no assimilation case. The effects on rainfall prediction of the assimilation of hydrometeor types appear in longer prediction lead time compared with the effects of the assimilation of radar echo only.

  • PDF

서비스 블루프린트와 FTA를 이용한 서비스 신뢰도 평가모델 (Evaluation Model of Service Reliability Using a Service Blueprint and FTA)

  • 유정상;오형술
    • 산업경영시스템학회지
    • /
    • 제35권4호
    • /
    • pp.194-201
    • /
    • 2012
  • Because the difference between products and services are getting less and less, service and manufacturing companies' efforts are increasingly focused on utilizing services to satisfy customers' needs under today's competitive market environment. The value of services depends on service reliability that is identified by satisfaction derived from the relationship between customer needs and service providers. In this paper, we extend concepts from the fault tree analysis for reliability analysis of tangible systems to services. We use an event-based process model to facilitate service design and represent the relationships between functions and failures in a service. The objective of this research is to propose a method for evaluating service reliability based on service processes using service blueprint and FTA. We can identify the failure mode of service in a service delivery process with a service blueprint. The fuzzy membership function is used to characterize the probability of failure based on linguistic terms. FTA is employed to estimate the reliability of service delivery processes with risk factors that are represented as potential failure causes. To demonstrate implementation of the proposed method, we use a case study involving a typical automotive service operation.

MONITORING SEVERE ACCIDENTS USING AI TECHNIQUES

  • No, Young-Gyu;Kim, Ju-Hyun;Na, Man-Gyun;Lim, Dong-Hyuk;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • 제44권4호
    • /
    • pp.393-404
    • /
    • 2012
  • After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

Estimation of spatial distribution of precipitation by using of dual polarization weather radar data

  • Oliaye, Alireza;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.132-132
    • /
    • 2021
  • Access to accurate spatial precipitation in many hydrological studies is necessary. Existence of many mountains with diverse topography in South Korea causes different spatial distribution of precipitation. Rain gauge stations show accurate precipitation information in points, but due to the limited use of rain gauge stations and the difficulty of accessing them, there is not enough accurate information in the whole area. Weather radars can provide an integrated precipitation information spatially. Despite this, weather radar data have some errors that can not provide accurate data, especially in heavy rainfall. In this study, some location-based variable like aspect, elevation, plan curvature, profile curvature, slope and distance from the sea which has most effect on rainfall was considered. Then Automatic Weather Station data was used for spatial training of variables in each event. According to this, K-fold cross-validation method was combined with Adaptive Neuro-Fuzzy Inference System. Based on this, 80% of Automatic Weather Station data was used for training and validation of model and 20% was used for testing and evaluation of model. Finally, spatial distribution of precipitation for 1×1 km resolution in Gwangdeoksan radar station was estimates. The results showed a significant decrease in RMSE and an increase in correlation with the observed amount of precipitation.

  • PDF

전력용 케이블 시편에서 전기트리 발생원에 따른 부분방전 분포 특성 및 발생원 분류기법 비교 (Analysis of PD Distribution Characteristics and Comparison of Classification Methods according to Electrical Tree Source in Power Cable)

  • 박성희;정해은;임기조;강성화
    • 한국전기전자재료학회논문지
    • /
    • 제20권1호
    • /
    • pp.57-64
    • /
    • 2007
  • One of the cause of insulation failure in power cable is well known by electrical treeing discharge. This is occurred for imposed continuous stress at cable. And this event is related to safety, reliability and maintenance. In this paper, throughout analysis of partial discharge(PD) distribution when occurring the electrical tree, is studied for the purpose of knowing of electrical treeing discharge characteristics according to defects. Own characteristic of tree will be differently processed in each defect and this reason is the first purpose of this paper. To acquire PD data, three defective tree models were made. And their own data is shown by the phase-resolved partial discharge method (PRPD). As a result of PRPD, tree discharge sources have their own characteristics. And if other defects (void, metal particle) exist internal power cable then their characteristics are shown very different. This result Is related to the time of breakdown and this is importance of cable diagnosis. And classification method of PD sources was studied in this paper. It needs select the most useful method to apply PD data classification one of the proposed method. To meet the requirement, we select methods of different type. That is, neural network(NN-BP), adaptive neuro-fuzzy inference system and PCA-LDA were applied to result. As a result of, ANFIS shows the highest rate which value is 98 %. Generally, PCA-LDA and ANFIS are better than BP. Finally, we performed classification of tree progress using ANFIS and that result is 92 %.

시간흐름을 고려한 특징 추출과 군집 분석을 이용한 헬스 리스크 관리 (Health Risk Management using Feature Extraction and Cluster Analysis considering Time Flow)

  • 강지수;정경용;정호일
    • 한국융합학회논문지
    • /
    • 제12권1호
    • /
    • pp.99-104
    • /
    • 2021
  • 본 논문에서는 시간 흐름을 고려한 특징추출과 군집분석을 이용한 헬스 리스크 관리를 제안한다. 제안하는 방법은 세단계로 진행한다. 첫 번째는 전처리 및 특징추출 단계이다. 이는 웨어러블 디바이스를 이용하여 라이프로그를 수집하여 불완전데이터, 에러, 잡음, 모순된 데이터를 제거하며 결측 값을 처리한다. 그 다음 특징추출을 위해 주성분 분석을 통해 중요 변수를 선택하고, 상관계수와 공분산을 통해 데이터 간의 관계와 유사한 데이터들의 분류를 진행한다. 또한 라이프로그에서 추출한 특징을 분석하기 위해 시간의 흐름을 고려하여 K-means 알고리즘을 통해 동적 군집을 진행한다. 새로운 데이터는 오차 제곱합의 증가분을 기반으로 유사성 거리 측정 방법을 통해 군집을 진행하고, 시간의 흐름을 고려하여 군집에 대한 정보를 추출한다. 따라서 특징 군집을 통해 헬스 의사결정 시스템을 이용하여 신체적 특성, 생활습관, 질병여부, 헬스케어 이벤트 발생위험, 예상 정도 등의 요소를 통해 리스크를 관리할 수 있다. 성능평가는 Precision, Recall, F-measure을 사용하여 제안하는 방법과 퍼지방법, 커널기반 방법을 비교한다. 평가결과 제안하는 방법이 우수하게 평가된다. 따라서 제안하는 방법을 통해 유병자와의 유사도를 이용하여 정확한 사용자의 잠재적 건강 위험을 예측 및 적절한 관리가 가능하다.