In collaborative recommendation two models are generally used: the user model and the article model. A user model learns correlation between users preferences and recommends an article based on other users preferences for the article. Similarly, an article model learns correlation between preferences for articles and recommends an article based on the target user's preference for other articles. In this paper, we investigates various combination methods of the user model and the article model for better recommendation performance. They include simple sequential and parallel methods, perceptron, multi-layer perceptron, fuzzy rules, and BKS. We adopt the multi-layer perceptron for training each of the user and article models. The multi-layer perceptron has several advantages over other methods such as the nearest neighbor method and the association rule method. It can learn weights between correlated items and it can handle easily both of symbolic and numeric data. The combined models outperform any of the basic models and our experiments show that the multi-layer perceptron is the most efficient combination method among them.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.2
/
pp.236-244
/
2005
In this study, we introduce a new topology of Fuzzy Polynomial Neural Networks(FPNN) that is based on fuzzy relation and evolutionally optimized Multi-Layer Perceptron, discuss a comprehensive design methodology and carry out a series of numeric experiments. The construction of the evolutionally optimized FPNN(EFPNN) exploits fundamental technologies of Computational Intelligence. The architecture of the resulting EFPNN results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks(PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the EFPNN. The consequence part of the EFPNN is designed using PNN. As the consequence part of the EFPNN, the development of the genetically optimized PNN(gPNN) dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the EFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed EFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.483-487
/
2005
We introduce a new architecture of hetero-hybridized feed-forward neural networks composed of fuzzy set-based polynomial neural networks (FSPNN) and polynomial neural networks (PM) that are based on a genetically optimized multi-layer perceptron and develop their comprehensive design methodology involving mechanisms of genetic optimization and Information Granulation. The construction of Information Granulation based HFSPNN (IG-HFSPNN) exploits fundamental technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks, and genetic algorithms(GAs) and Information Granulation. The architecture of the resulting genetically optimized Information Granulation based HFSPNN (namely IG-gHFSPNN) results from a synergistic usage of the hybrid system generated by combining new fuzzy set based polynomial neurons (FPNs)-based Fuzzy Neural Networks(PM) with polynomial neurons (PNs)-based Polynomial Neural Networks(PM). The design of the conventional genetically optimized HFPNN exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being tuned by using Genetie Algorithms throughout the overall development process. However, the new proposed IG-HFSPNN adopts a new method called as Information Granulation to deal with Information Granules which are included in the real system, and a new type of fuzzy polynomial neuron called as fuzzy set based polynomial neuron. The performance of the IG-gHFPNN is quantified through experimentation.
Proceedings of the Korean Society of Precision Engineering Conference
/
1993.04b
/
pp.262-266
/
1993
The development of COPS(Computer aided Operation Planning System) needs data mapping paradigm which provides intelligent determonation of cutting conditions from the requirements of process planning side. We proposed the idea of multi-level mapping by the combination of heuristics of domain experts and mathematical abstraction of cutting condition and requirements. Mathematical mathods for the generalization of heuristics were constructed by multi-layer perceptron. DBMS for determination of cutting conditions was constructed by classification and combination of best fitted models. Triangular fuzzy number was used to process the uncertainties in heuristics of experts.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2004.05a
/
pp.1-5
/
2004
In this paper, we propose a novel approach for evolving the architecture of a multi-layer neural network. Our method uses combined ART1 algorithm and Max-Min neural network to self-generate nodes in the hidden layer. We have applied the. proposed method to the problem of recognizing ID number in student identity cards. Experimental results with a real database show that the proposed method has better performance than a conventional neural network.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.55
no.2
/
pp.45-51
/
2006
In this paper, we propose a new architecture of Information Granulation based genetically optimized Self-Organizing Fuzzy Polynomial Neural Networks (IG_gSOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially information granulation and genetic algorithms. The proposed IG_gSOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). To evaluate the performance of the IG_gSOFPNN, the model is experimented with using two time series data(gas furnace process and NOx process data).
The Transactions of the Korean Institute of Electrical Engineers D
/
v.53
no.3
/
pp.135-144
/
2004
In this paper, we propose competitive fuzzy polynomial neurons-based advanced Self-Organizing Neural Networks(SONN) architecture for optimal model identification and discuss a comprehensive design methodology supporting its development. The proposed SONN dwells on the ideas of fuzzy rule-based computing and neural networks. And it consists of layers with activation nodes based on fuzzy inference rules and regression polynomial. Each activation node is presented as Fuzzy Polynomial Neuron(FPN) which includes either the simplified or regression polynomial fuzzy inference rules. As the form of the conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as linear, quadratic, and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership (unction are studied and the number of the premise input variables used in the rules depends on that of the inputs of its node in each layer. We introduce two kinds of SONN architectures, that is, the basic and modified one with both the generic and the advanced type. Here the basic and modified architecture depend on the number of input variables and the order of polynomial in each layer. The number of the layers and the nodes in each layer of the SONN are not predetermined, unlike in the case of the popular multi-layer perceptron structure, but these are generated in a dynamic way. The superiority and effectiveness of the Proposed SONN architecture is demonstrated through two representative numerical examples.
Annual Conference on Human and Language Technology
/
1993.10a
/
pp.317-328
/
1993
본 논문은 신경망과 퍼지 이론을 결합한 한국어 철자 교정기 KSCNN(Korean Spelling Corrector using Neural Network)에 대하여 기술한다. KSCNN은 퍼셉트론(perceptron) 학습을 이용한 연상 메모리(associative memory)로 구성되며 자판 배열 특성을 고려한 퍼지 멤버쉽 함수에 의해 신경망의 입력값을 정한다. 본 철자 교정기의 장점은 인지적인 방법으로 철자를 교정하기 때문에 기존의 VA나 BNA와는 달리 오류의 종류에 영향을 받지 않으며 교정된 철자나 후보자들에 대한 견인값(attraction value)을 측정하여 시스템의 신뢰도를 높일 수 있다는 데 있다. 또한, 본 논문은 실험을 통해서 퍼지 멤버쉽 함수에 의한 입력 노드의 활성화가 자판 배열특성을 고려할 수 있기 때문에 시스템의 성능을 향상시킨다는 사실을 보여준다.
Journal of information and communication convergence engineering
/
v.2
no.1
/
pp.36-39
/
2004
In this paper, a method of improving the learning speed and convergence rate is proposed to exploit the advantages of artificial neural networks and neuro-fuzzy systems. This method is applied to the XOR problem, n bit parity problem, which is used as the benchmark in the field of pattern recognition. The method is also applied to the recognition of digital image for practical image application. As a result of experiment, it does not always guarantee convergence. However, the network showed considerable improvement in learning time and has a high convergence rate. The proposed network can be extended to any number of layers. When we consider only the case of the single layer, the networks had the capability of high speed during the learning process and rapid processing on huge images.
The judgement model to warn of possible pollution accident is constructed by multi-perceptron, multi layer neural network, neuro-fuzzy and it is trained stability, notice, and warming situation due to developed standard axis. The water quality forecasting model is linked to the runoff forecasting model, and joined with the judgement model to warn of possible pollution accident, which completes the artificial intelligence warning system. And GUI (Graphic User Interface) has been designed for that system. GUI screens, in order of process, are main page, data edit, discharge forecasting, water quality forecasting, warming system. The application capability of the system was estimated by the pollution accident scenario. Estimation results verify that the artificial intelligence warning system can be a reasonable judgement of the noized water pollution data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.