• Title/Summary/Keyword: fuzzy C-means clustering

Search Result 310, Processing Time 0.023 seconds

Performance Evaluation of Pixel Clustering Approaches for Automatic Detection of Small Bowel Obstruction from Abdominal Radiographs

  • Kim, Kwang Baek
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.153-159
    • /
    • 2022
  • Plain radiographic analysis is the initial imaging modality for suspected small bowel obstruction. Among the many features that affect the diagnosis of small bowel obstruction (SBO), the presence of gas-filled or fluid-filled small bowel loops is the most salient feature that can be automatized by computer vision algorithms. In this study, we compare three frequently applied pixel-clustering algorithms for extracting gas-filled areas without human intervention. In a comparison involving 40 suspected SBO cases, the Possibilistic C-Means and Fuzzy C-Means algorithms exhibited initialization-sensitivity problems and difficulties coping with low intensity contrast, achieving low 72.5% and 85% success rates in extraction. The Adaptive Resonance Theory 2 algorithm is the most suitable algorithm for gas-filled region detection, achieving a 100% success rate on 40 tested images, largely owing to its dynamic control of the number of clusters.

Color image segmentation using the possibilistic C-mean clustering and region growing (Possibilistic C-mean 클러스터링과 영역 확장을 이용한 칼라 영상 분할)

  • 엄경배;이준환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.97-107
    • /
    • 1997
  • Image segmentation is teh important step in image infromation extraction for computer vison sytems. Fuzzy clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are derived from the fuzzy c-means (FCM) algorithm. The FCM algorithm uses th eprobabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belongingor compatibility. moreover, the FCM algorithm has considerable trouble above under noisy environments in the feature space. Recently, the possibilistic C-mean (PCM) for solving growing for color image segmentation. In the PCM, the membersip values may be interpreted as degrees of possibility of the data points belonging to the classes. So, the problems in the FCM can be solved by the PCM. The clustering results by just PCM are not smoothly bounded, and they often have holes. So, the region growing was used as a postprocessing. In our experiments, we illustrated that the proposed method is reasonable than the FCM in noisy enviironments.

  • PDF

An Improved Clustering Method with Cluster Density Independence

  • Yoo, Byeong-Hyeon;Kim, Wan-Woo;Heo, Gyeongyong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.15-20
    • /
    • 2015
  • In this paper, we propose a modified fuzzy clustering algorithm which can overcome the center deviation due to the Euclidean distance commonly used in fuzzy clustering. Among fuzzy clustering methods, Fuzzy C-Means (FCM) is the most well-known clustering algorithm and has been widely applied to various problems successfully. In FCM, however, cluster centers tend leaning to high density clusters because the Euclidean distance measure forces high density cluster to make more contribution to clustering result. Proposed is an enhanced algorithm which modifies the objective function of FCM by adding a center-scattering term to make centers not to be close due to the cluster density. The proposed method converges more to real centers with small number of iterations compared to FCM. All the strengths can be verified with experimental results.

FCM Algorithm for Application to Fuzzy Control

  • KAMEI, Katsuari
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.619-624
    • /
    • 1998
  • This paper presents a new clustering algorithm called FCM algorithm for the design of fuzzy controller. FCM is an extended version of FCM(Fuzzy c-Means) algorithm and can estimate the number of clusters automatically and give membership grades $u_{ik}$ suitable for making fuzzy control rules. This paper also shows an example of its application to the line pursuit control of a car.

  • PDF

Nonlinear System Modeling Using Genetic Algorithm and FCM-basd Fuzzy System (유전알고리즘과 FCM 기반 퍼지 시스템을 이용한 비선형 시스템 모델링)

  • 곽근창;이대종;유정웅;전명근
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.491-499
    • /
    • 2001
  • In this paper, the scheme of an efficient fuzzy rule generation and fuzzy system construction using GA(genetic algorithm) and FCM(fuzzy c-means) clustering algorithm is proposed for TSK(Takagi-Sugeno-Kang) type fuzzy system. In the structure identification, input data is transformed by PCA(Principal Component Analysis) to reduce the correlation among input data components. And then, a set fuzzy rules are generated for a given criterion by FCM clustering algorithm . In the parameter identification premise parameters are optimally searched by GA. On the other hand, the consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. From this one can systematically obtain the valid number of fuzzy rules which shows satisfying performance for the given problem. Finally, we applied the proposed method to the Box-Jenkins data and rice taste data modeling problems and obtained a better performance than previous works.

  • PDF

Design and Analysis of TSK Fuzzy Inference System using Clustering Method (클러스터링 방법을 이용한 TSK 퍼지추론 시스템의 설계 및 해석)

  • Oh, Sung-Kwun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.3
    • /
    • pp.132-136
    • /
    • 2014
  • We introduce a new architecture of TSK-based fuzzy inference system. The proposed model used fuzzy c-means clustering method(FCM) for efficient disposal of data. The premise part of fuzzy rules don't assume any membership function such as triangular, gaussian, ellipsoidal because we construct the premise part of fuzzy rules using FCM. As a result, we can reduce to architecture of model. In this paper, we are able to use four types of polynomials as consequence part of fuzzy rules such as simplified, linear, quadratic, modified quadratic. Weighed Least Square Estimator are used to estimates the coefficients of polynomial. The proposed model is evaluated with the use of Boston housing data called Machine Learning dataset.

The Design of Fuzzy Controller by Means of Genetic Optimization and Estimation Algorithms

  • Oh, Sung-Kwun;Rho, Seok-Beom
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.

  • PDF

An Interval Type-2 Fuzzy PCM Algorithm for Pattern Recognition (패턴인식을 위한 Interval Type-2 퍼지 PCM 알고리즘)

  • Min, Ji-Hee;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.102-107
    • /
    • 2009
  • The Possibilistic C-means(PCM) was proposed to overcome some of the drawbacks associated with the Fuzzy C-means(FCM) such as improved performance for noise data. However, PCM possesses some drawbacks such as sensitivity in initial parameter values and to patterns that have relatively short distances between the prototypes. To overcome these drawbacks, we propose an interval type 2 fuzzy approach to PCM by considering uncertainty in the fuzzy parameter m in the PCM algorithm.

A Study on Effective Selection of University Lecture Evaluation (대학 강의평가에서 문항 추출에 관한 연구)

  • Hwang Se-Myung;Kim In-Taek
    • Journal of Engineering Education Research
    • /
    • v.8 no.1
    • /
    • pp.31-45
    • /
    • 2005
  • In this paper, selecting survey items was performed using three clustering methods: factor analysis, fuzzy c-Means algorithm and cluster analysis. The methods were used to extract key items from various questionnaires. The key item represents several similar questionnaires that form a cluster. Test survey was made of 120 items obtained from several surveys and it was answered by 646 students from 4 universities. Each item contains 6 choices. Applying the clustering method chose 25 items which is reduced from the original 120 items. The results yielded by three methods are very similar.

Improved FCM Clustering Image Segmentation (개선된 FCM 클러스터링 영상 분할)

  • Lee, Kwang-Kyug
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.127-131
    • /
    • 2020
  • Fuzzy C-Means(FCM) algorithm is frequently used as a representative image segmentation method using clustering. FCM divides the image space into cluster regions with similar pixel values, which requires a lot of segmentation time. In particular, the processing speed problem for analyzing various patterns of the current users of the web is more important. To solve this speed problem, this paper proposes an improved FCM (Improved FCM : IFCM) algorithm for segmenting the image into the Otsu threshold and FCM. In the proposed method, the threshold that maximizes the variance between classes of Otsu is determined, applied to the FCM, and the image is segmented. Experiments show that IFCM improves performance by shortening image segmentation time compared to conventional FCM.