• 제목/요약/키워드: fuzzy ART

검색결과 151건 처리시간 0.025초

웨이브렛 계수에 근거한 Fuzzy-ART 네트워크를 이용한 PVC 분류 (Classification of the PVC Using The Fuzzy-ART Network Based on Wavelet Coefficient)

  • 박광리;이경중;이윤선;윤형로
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권4호
    • /
    • pp.435-442
    • /
    • 1999
  • 본 연구에서는 PVC를 분류하기 위하여 웨이브렛 계수를 기반으로 하는 fuzzy-ART 네트워크를 설계하였다. 설계된 네트워크는 feature를 추출하는 부분과 fuzzy-ART 네트워크를 학습시키는 부분으로 구성된다. 우선 feature의 문턱치 구간을 설정하기 위하여 심전도 신호의 QRS를 검출하였고, 검출된 QRS는 Haar 웨이브렛을 이용한 웨이브렛 변환에 의해 주파수 분할하였다. 분할된 주파수 중에서 입력 feature를 추출하기 위하여 저주파 영역의 6번째 계수(D6)만을 선택하였다. D6신호는 입력 feature를 구성하기 위한 문턱치를 적용하여 fuzzy-ART 네트워크의 2진수 입력 feature로 전환하였고, PVC를 분류하기 위하여 fuzzy-ART네트워크를 학습시켰다. 본 연구의 성능을 평가하기 위하여 PVC가 포함된 MIT/BIH 데이터 베이스가 사용되었으며, fuzzy-ART 네트워크의 분류성능은 96.25%이었다.

  • PDF

패턴인식을 위한 타원형 Fuzzy-ART (Ellipsoid Fuzzy-ART for Pattern Recognition Improvement)

  • 강성호;정성부;임중규;이현관;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.305-308
    • /
    • 2003
  • 본 논문에서는 Fuzzy-ART (Fuzzy-Adaptive Resonance Theory) 신경회로망의 패턴인식 성능을 개선하기 위해 Mahalanobis 거리를 이용한 타원형 fuzzy-ART 신경회로망을 제안한다. 제안한 방식은 벡터공간상에서 패턴의 영역을 규정하기 위해 Mahalanobois 거리 개념을 이용한다. 제안한 방식의 유용성을 확인하기 위해 얼굴인식에 적용하였으며, 기존의 방식과 비교 검토한 결과 유용성을 확인하였다.

  • PDF

웹마이닝을 위한 퍼지 클러스터링 알고리즘 (Fuzzy Clustering Algorithm for Web-mining)

  • 임영희;송지영;박대희
    • 한국지능시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.219-227
    • /
    • 2002
  • 웹 검색 엔진의 검색 결과를 클러스터링하는 후처리 클러스터링 알고리즘은 그 특성상 일반적인 클러스터링 알고리즘과는 다른 요구조건을 갖는다. 본 논문에서는 이러한 후처리 클러스터링 알고리즘의 요구조건들을 최대한 만족하는 새로운 클러스터링 알고리즘을 제안하고자 한다. 제안된 Fuzzy Concept ART는 무서 클러스터링에 있어 여러 가지 장점을 갖는 개념 벡터와 실시간 클러스터링 알고리즘으로 알려진 Fuzzy ART를 퍼지이론에 기반하여 결합한 형태로써, 후처리 클러스터링뿐 아니라 범용의 클러스터링 알고리즘으로도 응용이 가능하다.

개선된 퍼지 ART 알고리즘을 이용한 차량 번호판 인식에 관한 연구 (A Study on the Recognition of Car Plate using an Enhanced Fuzzy ART Algorithm)

  • 임은경;김광백
    • 한국멀티미디어학회논문지
    • /
    • 제3권5호
    • /
    • pp.433-444
    • /
    • 2000
  • 본 논문은 개선된 퍼지 ART알고리즘을 이용한 차량 번호판 인식에 대한 연구이다. 차량 영상에서 번호판 영역을 추출하기 위해 수평·수직 에지의 형태학적 정보를 이용하고, 추출된 번호판에서 문자를 포함하는 특징 영역을 추출하기 위해 SOFM을 적용한 윤곽선(Contour)추적 알고리즘을 이용한다. 추출된 특징 영역의 인식은 개선된 퍼지 ART알고리즘을 사용한다. 본 논문에서 제안한 퍼지 ART알고리즘은 클러스터링 하는데 있어서 임의의 패턴과 저장된 패턴사이의 불일치 허용도를 나타내는 유사도(vigilance threshold)를 동적으로 설정함으로써 기존의 퍼지 ART 알고리즘을 개선한다. 추출 실험 결과, 수평·수직 에지의 형태학적 정보를 이용한 추출 방법이 RGB와 HSI 컬러 정보를 이용한 추출 방법보다 추출율이 개선되었다. 인식 결과에서도 개선된 퍼지 ART알고리즘이 기존의 퍼지 ART 알고리즘과 SOFM 알고리즘보다 인식율이 향상되었다.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of Fuzzy ART Neural Networks

  • Seo, Kwang-Kyu;Park, Ji-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2137-2147
    • /
    • 2004
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end-of-life phase. Disposal products have the uncertainties of product status by usage influences during product use phase, and recycling cells are formed design, process and usage attributes. In order to deal with the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. Fuzzy C-mean algorithm and a heuristic approach based on fuzzy ART neural network is suggested. Especially, the modified Fuzzy ART neural network is shown that it has a good clustering results and gives an extension for systematically generating alternative solutions in the recycling cell formation problem. Disposal refrigerators are shown as examples.

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products me classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem far disposal products. In this paper, a heuristic approach fuzzy ART neural network is suggested. The modified fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its ai is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. In this paper, a heuristic approach for fuzzy ART neural network is suggested. The modified Fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its aim is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

효과적인 운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘 (An Enhanced Fuzzy ART Algorithm for The Effective Identifier Recognition From Shipping Container Image)

  • 김광백
    • 한국통신학회논문지
    • /
    • 제28권5C호
    • /
    • pp.486-492
    • /
    • 2003
  • 퍼지 ART 알고리즘에서 경계 변수는 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 패턴과 저장 패턴 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 된다. 반대로 경계 변수가 작으면 입력 패턴과 저장 패턴 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 패턴을 저장 패턴의 카테고리로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경계 변수를 경험적으로 설정한다. 그리고 연결 가중치를 조정하는 과정에서 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식률을 저하시킨다. 본 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 가중치 조정에 적용하는 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 인식 성능을 확인하기 위해서 운송 컨테이너 영상을 대상으로 실험한 결과, 기존의 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

반도체식 가스센서와 퍼지 ART를 이용한 혼합가스의 농도 추정 (Concentration estimation of gas mixtures using a tin oxide gas sensor and fuzzy ART)

  • 이정헌;조정환;전기준
    • 전자공학회논문지SC
    • /
    • 제43권4호
    • /
    • pp.21-29
    • /
    • 2006
  • 본 논문에서는 혼합가스의 종류를 구분하고 농도를 추정하기 위하여 퍼지 ARTMAP 신경회로망과 퍼지 ART 신경회로망을 각각 사용하였다. 온도변환 구동방식의 반도체식 가스센서를 이용하여 $NH_3,\;H_2S$, 그리고 그들의 혼합가스에 대해서 데이터를 획득하였고, 데이터들을 제안한 패턴인식방법의 입력으로 사용하기 위해서 전 처리 과정을 통해 데이터들의 차원을 줄여주었다. 실험을 통해서 본 논문에서 사용한 방법이 이전의 다른 방법들과 비교하여 학습시간을 줄이면서 좀더 안정된 농도 추정 성능을 보여줌을 확인하였다.

퍼지 ART에서 잡음 여유도를 개선하기 위한 새로운 학습방법의 연구 (A Study on the New Learning Method to Improve Noise Tolerance in Fuzzy ART)

  • 이창주;이상윤;이충웅
    • 전자공학회논문지B
    • /
    • 제32B권10호
    • /
    • pp.1358-1363
    • /
    • 1995
  • This paper presents a new learning method for a noise tolerant Fuzzy ART. In the conventional Fuzzy ART, the top-down and bottom-up weight vectors have the same value. They are updated by a fuzzy AND operation between the input vector and the current value of the top-down or bottom- up weight vectors. However, it can not prevent the abrupt change of the weight vector and can not achieve good performance for a noisy input vector. To solve the problems, we updated using the weighted sum of the input vector and the current value of the top-down vector. To achieve stability, the bottom-up weight vector is updated using the fuzzy AND operation between the newly learned top-down vector and the current value of the bottom-up vector. Computer simulations show that the proposed method prominently resolves the category proliferation problem without increasing the training epoch for stabilization in noisy environments.

  • PDF