• Title/Summary/Keyword: future prediction

Search Result 1,809, Processing Time 0.245 seconds

A Performance Study on the TPR*-Tree (TPR*-트리의 성능 분석에 관한 연구)

  • Kim, Sang-Wook;Jang, Min-Hee;Lim, Seung-Hwan
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.1 s.16
    • /
    • pp.17-25
    • /
    • 2006
  • TPR*-tree is the most widely-used index structure for effectively predicting the future positions of moving objects. The TPR*-tree, however, has the problem that both of the dead space in a bounding region and the overlap among hounding legions become larger as the prediction time in the future gets farther. This makes more nodes within the TPR*-tree accessed in query processing time, which incurs the performance degradation. In this paper, we examine the performance problem quantitatively with a series of experiments. First, we show how the performance deteriorates as a prediction time gets farther, and also show how the updates of positions of moving objects alleviates this problem. Our contribution would help provide Important clues to devise strategies improving the performance of TPR*-trees further.

  • PDF

Prediction of Marine Accident Frequency Using Markov Chain Process (마코프 체인 프로세스를 적용한 해양사고 발생 예측)

  • Jang, Eun-Jin;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.266-266
    • /
    • 2019
  • Marine accidents are increasing year by year, and various accidents occur such as engine failure, collision, stranding, and fire. These marine accidents present a risk of large casualties. It is important to prevent accidents beforehand. In this study, we propose a modeling to predict the occurrence of marine accidents by applying the Markov Chain Process that can predict the future based on past data. Applying the proposed modeling, the probability of future marine accidents was calculated and compared with the actual frequency. Through this, a probabilistic model was proposed to prepare a prediction system for marine accidents, and it is expected to contribute to predicting various marine accidents.

  • PDF

Development of Comparative Verification System for Reliability Evaluation of Distribution Line Load Prediction Model (배전 선로 부하예측 모델의 신뢰성 평가를 위한 비교 검증 시스템)

  • Lee, Haesung;Lee, Byung-Sung;Moon, Sang-Keun;Kim, Junhyuk;Lee, Hyeseon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.115-123
    • /
    • 2021
  • Through machine learning-based load prediction, it is possible to prevent excessive power generation or unnecessary economic investment by estimating the appropriate amount of facility investment in consideration of the load that will increase in the future or providing basic data for policy establishment to distribute the maximum load. However, in order to secure the reliability of the developed load prediction model in the field, the performance comparison verification between the distribution line load prediction models must be preceded, but a comparative performance verification system between the distribution line load prediction models has not yet been established. As a result, it is not possible to accurately determine the performance excellence of the load prediction model because it is not possible to easily determine the likelihood between the load prediction models. In this paper, we developed a reliability verification system for load prediction models including a method of comparing and verifying the performance reliability between machine learning-based load prediction models that were not previously considered, verification process, and verification result visualization methods. Through the developed load prediction model reliability verification system, the objectivity of the load prediction model performance verification can be improved, and the field application utilization of an excellent load prediction model can be increased.

Future water quality analysis of the Anseongcheon River basin, Korea under climate change

  • Kim, Deokwhan;Kim, Jungwook;Joo, Hongjun;Han, Daegun;Kim, Hung Soo
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) predicted that recent extreme hydrological events would affect water quality and aggravate various forms of water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed and sunlight) were established using the Representative Concentration Pathways (RCP) 8.5 climate change scenario suggested by the AR5 and calculated the future runoff for each target period (Reference:1989-2015; I: 2016-2040; II: 2041-2070; and III: 2071-2099) using the semi-distributed land use-based runoff processes (SLURP) model. Meteorological factors that affect water quality (precipitation, temperature and runoff) were inputted into the multiple linear regression analysis (MLRA) and artificial neural network (ANN) models to analyze water quality data, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (T-N) and total phosphorus (T-P). Future water quality prediction of the Anseongcheon River basin shows that DO at Gongdo station in the river will drop by 35% in autumn by the end of the $21^{st}$ century and that BOD, COD and SS will increase by 36%, 20% and 42%, respectively. Analysis revealed that the oxygen demand at Dongyeongyo station will decrease by 17% in summer and BOD, COD and SS will increase by 30%, 12% and 17%, respectively. This study suggests that there is a need to continuously monitor the water quality of the Anseongcheon River basin for long-term management. A more reliable prediction of future water quality will be achieved if various social scenarios and climate data are taken into consideration.

A Study on the Prediction of the World Seaborne Trade Volume through the Exponential Smoothing Method and Seemingly Unrelated Regression Model (지수평활법과 SUR 모형을 통한 세계 해상물동량 예측 연구)

  • Ahn, Young-Gyun
    • Korea Trade Review
    • /
    • v.44 no.2
    • /
    • pp.51-62
    • /
    • 2019
  • This study predicts the future world seaborne trade volume with econometrics methods using 23-year time series data provided by Clarksons. For this purpose, this study uses simple regression analysis, exponential smoothing method and seemingly unrelated regression model (SUR Model). This study is meaningful in that it predicts worldwide total seaborne trade volume and seaborne traffic in four major items (container, bulk, crude oil, and LNG) from 2019 to 2023 as there are few prior studies that predict future seaborne traffic using recent data. It is expected that more useful references can be provided to trade related workers if the analysis period was increased and additional variables could be included in future studies.

Motion predictive control for DPS using predicted drifted ship position based on deep learning and replay buffer

  • Lee, Daesoo;Lee, Seung Jae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.768-783
    • /
    • 2020
  • Typically, a Dynamic Positioning System (DPS) uses a PID feed-back system, and it often adopts a wind feed-forward system because of its easier implementation than a feed-forward system based on current or wave. But, because a ship's drifting motion is caused by wind, current, and wave drift loads, all three environmental loads should be considered. In this study, a motion predictive control for the PID feedback system of the DPS is proposed, which considers the three environmental loads by utilizing predicted drifted ship positions in the future since it contains information about the three environmental loads from the moment to the future. The prediction accuracy for the future drifted ship position is ensured by adopting deep learning algorithms and a replay buffer. Finally, it is shown that the proposed motion predictive system results in better station-keeping performance than the wind feed-forward system.

A Simulation Study on Future Climate Change Considering Potential Forest Distribution Change in Landcover (잠재 산림분포 변화를 고려한 토지이용도가 장래 기후변화에 미치는 영향 모사)

  • Kim, Jea-Chul;Lee, Chong Bum;Choi, Sungho
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.105-117
    • /
    • 2012
  • Future climate according to land-use change was simulated by regional climate model. The goal of study was to predict the distribution of meteorological elements using the Weather Research & Forecasting Model (WRF). The KME (Korea Ministry of Environment) medium-category land-use classification was used as dominant vegetation types. Meteorological modeling requires higher and more sophisticated land-use and initialization data. The WRF model simulations with HyTAG land-use indicated certain change in potential vegetation distribution in the future (2086-2088). Compared to the past (1986-1988) distribution, coniferous forest area was decreased in metropolitan and areas with complex terrain. The research shows a possibility to simulate regional climate with high resolution. As a result, the future climate was predicted to $4.5^{\circ}$ which was $0.5^{\circ}$ higher than prediction by Meteorological Administration. To improve future prediction of regional area, regional climate model with HyTAG as well as high resolution initial values such as urban growth and CO2 flux simulation would be desirable.

Analysis of Extreme Sea Surface Temperature along the Western Coastal area of Chungnam: Current Status and Future Projections

  • Byoung-Jun Lim;You-Soon Chang
    • Journal of the Korean earth science society
    • /
    • v.44 no.4
    • /
    • pp.255-263
    • /
    • 2023
  • Western coastal area of Chungnam, including Cheonsu Bay and Garorim Bay, has suffered from hot and cold extremes. In this study, the extreme sea surface temperature on the western coast of Chungnam was analyzed using the quantile regression method, which extracts the linear regression values in all quantiles. The regional MOHID (MOdelo HIDrodinâmico) model, with a high resolution on a 1/60° grid, was constructed to reproduce the extreme sea surface temperature. For future prediction, the SSP5-8.5 scenario data of the CMIP6 model were used to simulate sea surface temperature variability. Results showed that the extreme sea surface temperature of Cheonsu Bay in August 2017 was successfully simulated, and this extreme sea surface temperature had a significant negative correlation with the Pacific decadal variability index. As a result of future climate prediction, it was found that an average of 2.9℃ increased during the simulation period of 86 years in the Chungnam west coast and there was a seasonal difference (3.2℃ in summer, 2.4℃ in winter). These seasonal differences indicate an increase in the annual temperature range, suggesting that extreme events may occur more frequently in the future.

A Dynamic Piecewise Prediction Model of Solar Insolation for Efficient Photovoltaic Systems (효율적인 태양광 발전량 예측을 위한 Dynamic Piecewise 일사량 예측 모델)

  • Yang, Dong Hun;Yeo, Na Young;Mah, Pyeongsoo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.11
    • /
    • pp.632-640
    • /
    • 2017
  • Although solar insolation is the weather factor with the greatest influence on power generation in photovoltaic systems, the Meterological Agency does not provide solar insolation data for future dates. Therefore, it is essential to research prediction methods for solar insolation to efficiently manage photovoltaic systems. In this study, we propose a Dynamic Piecewise Prediction Model that can be used to predict solar insolation values for future dates based on information from the weather forecast. To improve the predictive accuracy, we dynamically divide the entire data set based on the sun altitude and cloudiness at the time of prediction. The Dynamic Piecewise Prediction Model is developed by applying a polynomial linear regression algorithm on the divided data set. To verify the performance of our proposed model, we compared our model to previous approaches. The result of the comparison shows that the proposed model is superior to previous approaches in that it produces a lower prediction error.

Energy Use Prediction Model in Digital Twin

  • Wang, Jihwan;Jin, Chengquan;Lee, Yeongchan;Lee, Sanghoon;Hyun, Changtaek
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1256-1263
    • /
    • 2022
  • With the advent of the Fourth Industrial Revolution, the amount of energy used in buildings has been increasing due to changes in the energy use structure caused by the massive spread of information-oriented equipment, climate change and greenhouse gas emissions. For the efficient use of energy, it is necessary to have a plan that can predict and reduce the amount of energy use according to the type of energy source and the use of buildings. To address such issues, this study presents a model embedded in a digital twin that predicts energy use in buildings. The digital twin is a system that can support a solution of urban problems through the process of simulations and analyses based on the data collected via sensors in real-time. To develop the energy use prediction model, energy-related data such as actual room use, power use and gas use were collected. Factors that significantly affect energy use were identified through a correlation analysis and multiple regression analysis based on the collected data. The proof-of-concept prototype was developed with an exhibition facility for performance evaluation and validation. The test results confirm that the error rate of the energy consumption prediction model decreases, and the prediction performance improves as the data is accumulated by comparing the error rates of the model. The energy use prediction model thus predicts future energy use and supports formulating a systematic energy management plan in consideration of characteristics of building spaces such as the purpose and the occupancy time of each room. It is suggested to collect and analyze data from other facilities in the future to develop a general-purpose energy use prediction model.

  • PDF