• Title/Summary/Keyword: fusion peptides

Search Result 60, Processing Time 0.022 seconds

Characterization of the Putative Membrane Fusion Peptides in the Envelope Proteins of Human Hepatitis B Virus

  • Kang, Ha-Tan;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1756-1762
    • /
    • 2007
  • Envelope proteins of virus contain a segment of hydrophobic amino acids, called as fusion peptide, which triggers membrane fusion by insertion into membrane and perturbation of lipid bilayer structure. Potential fusion peptide sequences have been identified in the middle of L or M proteins or at the N-terminus of S protein in the envelope of human hepatitis B virus (HBV). Two 16-mer peptides representing the N-terminal fusion peptide of the S protein and the internal fusion peptide in L protein were synthesized, and their membrane disrupting activities were characterized. The internal fusion peptide in L protein showed higher activity of liposome leakage and hemolysis of human red blood cells than the N-terminal fusion peptide of S protein. Also, the membrane disrupting activity of the extracellular domain of L protein significantly increased when the internal fusion peptide region was exposed to N-terminus by the treatment of V8 protease. These results indicate that the internal fusion peptide region of L protein could activate membrane fusion when it is exposed by proteolysis.

Expression of Antibacterial Cationic Peptides from Methylotrophic Yeast, Pichia pastoris

  • Lee, Gang-U;Choe, Yun-Jae
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.669-671
    • /
    • 2000
  • Antimicrobial cationic peptides have attracted increasing research and clinical interest as a natural antibiotics due to their broad spectrum of antimicrobial activites and the rapid development of multidrug-resistant pathogenic microorganisms. In this study, first, we synthesized artificial fusion partner and cationic peptide genes (lactoferricin, magainin, protegrin-1, and indolicidin). Second, we constructed recombinant expression vectors and then transformed Pichia pastoris. Finally, expressed cationic peptides were purified and tested for their antimicrobial activites. Antimicrobial activity has been tested upon the appearance of clearing zone on the plate with the lawn of gram negative E.coli XL- I blue and garm positive Staphylococcus aureus. Protegrin-1 and Indolicidin have apparant activity of cationic peotides. This fusion technique may lead to a general and suitable tool for production of pure antimicrobial cationic peptides in Pichia pastoris.

  • PDF

Expression and Purification of a Cathelicidin-Derived Antimicrobial Peptide, CRAMP

  • Park Eu-Jin;Chae Young-Kee;Lee Jee-Young;Lee Byoung-Jae;Kim Yang-Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1429-1433
    • /
    • 2006
  • Application of recombinant protein production and particularly their isotopic enrichment has stimulated development of a range of novel multidimensional heteronuclear NMR techniques. Peptides in most cases are amenable to assignment and structure determination without the need for isotopic labeling. However, there are many cases where the availability of $^{15}N$ and/or $^{13}C$ labeled peptides is useful to study the structure of peptides with more than 30 residues and the interaction between peptides and membrane. CRAMP (Cathelicidin-Related AntiMicrobial Peptide) was identified from a cDNA clone derived from mouse femoral marrow cells as a member of cathelicidin-derived antimicrobial peptides. CRAMP was successfully expressed as a GST-fused form in E. coli and purified using affinity chromatography and reverse-phase chromatography. The yield of the CRAMP was 1.5 mg/l 1. According to CD spectra, CRAMP adopted ${\alpha}$-helical conformation in membrane-mimetic environments. Isotope labeling of CRAMP is expected to make it possible to study the structure and dynamic properties of CRAMP in various membrane systems.

Discovery of New Fusion Inhibitor Peptides against SARS-CoV-2 by Targeting the Spike S2 Subunit

  • Kandeel, Mahmoud;Yamamoto, Mizuki;Tani, Hideki;Kobayashi, Ayako;Gohda, Jin;Kawaguchi, Yasushi;Park, Byoung Kwon;Kwon, Hyung-Joo;Inoue, Jun-ichiro;Alkattan, Abdallah
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.282-289
    • /
    • 2021
  • A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), caused a worldwide pandemic. Our aim in this study is to produce new fusion inhibitors against SARS-CoV-2, which can be the basis for developing new antiviral drugs. The fusion core comprising the heptad repeat domains (HR1 and HR2) of SARS-CoV-2 spike (S) were used to design the peptides. A total of twelve peptides were generated, comprising a short or truncated 24-mer (peptide #1), a long 36-mer peptide (peptide #2), and ten peptide #2 analogs. In contrast to SARS-CoV, SARS-CoV-2 S-mediated cell-cell fusion cannot be inhibited with a minimal length, 24-mer peptide. Peptide #2 demonstrated potent inhibition of SARS-CoV-2 S-mediated cell-cell fusion at 1 µM concentration. Three peptide #2 analogs showed IC50 values in the low micromolar range (4.7-9.8 µM). Peptide #2 inhibited the SARS-CoV-2 pseudovirus assay at IC50=1.49 µM. Given their potent inhibition of viral activity and safety and lack of cytotoxicity, these peptides provide an attractive avenue for the development of new prophylactic and therapeutic agents against SARS-CoV-2.

Expression of an Angiogenin Binding Peptide and Its Anti-Angiogenic Activity

  • Choi, Suk-Jung;Ahn, Mi-Won;Yoon, Kyoung-Bum;Park, Jong-Won
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.427-431
    • /
    • 1998
  • In the previous report (Choi et al., 1997), the angiogenin binding peptides identified from a phage-peptide library were analyzed by using the fusion proteins composed of the Escherichia coli maltose binding protein and its corresponding peptides. However, it was difficult to obtain a sufficient amount of the fusion proteins required for further analysis because of the low expression level. We now report a high level expression of the fusion protein and analysis of its anti-angiogenin activity. The use of strong T7 promoter and removal of signal sequence allowed about a 20-fold increase in the expression efficiency of the fusion protein. We were able to obtain about 10 mg of purified fusion protein from one liter of culture. The purified fusion protein showed angiogenin-specific affinity and inhibited the binding of biotinylated actin to human angiogenin at $IC_{50}$ of 0.6 mM. Its anti-angiogenin activity was also revealed by the chorioallantoic membrane assay.

  • PDF

Expression of Recombinant Hybrid Peptide Gaegurin4 and LL37 using Fusion Protein in E. coli (Glutathione S-Transferase에 융합한 재조합 Hybrid Peptide Gaegurin-LL37의 대장균에서의 발현)

  • Bayarbat, Ishvaanjil;Lee, Jae-Hag;Lee, Soon-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.92-97
    • /
    • 2012
  • Antimicrobial peptides (AMPs) are important components of living organisms acting against Gram-negative and Gram-positive bacterial and fungal pathogens. Cathelicidin human peptides have a variety of biological activities that can be used in clinical applications. AMPs are not produced naturally in large quantities, and chemical synthesis is also economically impractical, especially for long peptides. Therefore, as an alternative, heterologous expression of AMPs by recombinant techniques has been studied as a means to reduce production costs. E. coli is an excellent host for the expression of AMPs, as well as other recombinant proteins, because of the low cost involved and its easy manipulation. However, overexpression of AMPs in E. coli has been shown to cause difficulties resulting from the toxicity of the subsequently produced AMPs. Therefore, fusion expression was theorized to be a solution to this problem. In this study, AMPs were expressed as fused proteins with the glutathione S-transferase (GST) binding protein to protect against the toxicity of AMPs when expressed in E. coli. The LL37, and hybrid gaegurin and LL37 (GGN4(1-16)-LL37(17-32), which we designated as GL32, peptides were expressed as GST-fusion proteins in E. coli and the fusion proteins were then purified by affinity columns. The purified peptides were obtained by removal of GST and were confirmed by western blot analysis. The purified antimicrobial peptides then demonstrated antimicrobial activities against Gram-negative and Gram-positive bacterial strains.

Purification of Single Chain Human Insulin Precursors Using Various Fusion Proteins

  • Park, Seon-Ho;Jo, Jeong-U;Nam, Du-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.619-622
    • /
    • 2000
  • For the production of $B^{30}-homoserine$ human insulin precursor, four types of fusion peptides LacZ, MBP, GST, and His-tagged sequence were studied in this work. Recombinant E. coli JM 103 and E. coli JM 109 containing fusion peptides were cultivated at $37^{\circ}C$ for 1hr, and gene expression was occurred when 0.5mM of isopropyl-D-thiogalactoside(IPTG) was added to the culture broth, and followed by longer than 4hr fermentation respectively. DEAE-Sphacel and gel filtration chromatography, amylose and glutathione-Sepharose 4B affinity chromatography, and nickel-affinity chromatography system were employed as purification of $B^{30}-homoserine$ human insulin precursor. Recovery yields of His-tagged, LacZ, GST, and MBP fused $B^{30}-homoserine$ human insulin precursor resulted in 47%, 20%, 20%, and 18%, respectively.

  • PDF

Production and Purification of Single Chain Human Insulin Precursors with Various Fusion Peptides

  • Cho, Chung-Woo;Park, Sun-Ho;Nam, Doo-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2001
  • For the production and purification of a single chain human insulin precursor, four types of fusion peptides $\beta$-galactosidase (LacZ), maltose binding protein (MBP), glutathione-S-transferase (GST), and (His)(sub)6-tagged sequence (HTS) were investigated. Recombinant E. coli harboring hybrid genes was cultivated at 37$\^{C}$ for 1h, and gene induction occurred when 0.2mM of isopropyl-D-thiogalactoside (IPTG) was added to the culture broth, except for E. coli BL21 (DE3) pLysS harboring a pET-BA cultivation with 1.0mM IPTG, followed by a longer than 4h batch fermentation respectively. DEAE-Sphacel and Sephadex G-200 gel filtration chromatography, amylose affinity chromatography, glutathione-sepharose 4B affinity chromatography, and a nickel chelating affinity chromatography system as a kind of immobilized metal ion affinity chromatography (IMAC) were all employed for the purification of a single chain human insulin precursor. The recovery yields of the HTS-fused, GST-fused, MBP-fused, and LacZ-fused single chain human insulin precursors resulted in 47%, 20%, 20%, and 18% as the total protein amounts respectively. These results show that a higher recovery yield of the finally purified recombinant peptides was achieved when affinity column chromatography was employed and when the fused peptide had a smaller molecular weight. In addition the pET expression system gave the highest productivity of a fused insulin precursor due to a two-step regulation of the gene expression, and the HTS-fused system provided the highest recovery of a fused insulin precursor based on a simple and specific separation using the IMAC technique.

  • PDF

Construction of Bacillus subtilis strain engineered for expression of porcine β-defensin-2/cecropin P1 fusion antimicrobial peptides and its growth-promoting effect and antimicrobial activity

  • Xu, Jian;Zhong, Fei;Zhang, Yonghong;Zhang, Jianlou;Huo, Shanshan;Lin, Hongyu;Wang, Liyue;Cui, Dan;Li, Xiujin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.576-584
    • /
    • 2017
  • Objective: To generate recombinant Bacillus subtilis (B. subtilis) engineered for expression of porcine ${\beta}-defensin-2$ (pBD-2) and cecropin P1 (CP1) fusion antimicrobial peptide and investigate their anti-bacterial activity in vitro and their growth-promoting and disease resisting activity in vivo. Methods: The pBD-2 and CP1 fused gene was synthesized using the main codons of B. subtilis and inserted into plasmid pMK4 vector to construct their expression vector. The fusion peptide-expressing B. subtilis was constructed by transformation with the vector. The expressed fusion peptide was detected with Western blot. The antimicrobial activity of the expressed fusion peptide and the recovered pBD-2 and CP1 by enterokinase digestion in vitro was analyzed by the bacterial growth-inhibitory activity assay. To analyze the engineered B. subtilis on growth promotion and disease resistance, the weaned piglets were fed with basic diet supplemented with the recombinant B. subtilis. Then the piglets were challenged by enteropathogenic Escherichia coli (E. coli). The weight gain and diarrhea incidence of piglets were measured after challenge. Results: The recombinant B. subtilis engineered for expression of pBD-2/CP1 fusion peptide was successfully constructed using the main codons of the B. subtilis. Both expressed pBD-2/CP1 fusion peptide and their individual peptides recovered from parental fusion peptide by enterokinase digestion possessed the antimicrobial activities to a variety of the bacteria, including gram-negative bacteria (E. coli, Salmonella typhimurium, and Haemophilus parasuis) and grampositive bacteria (Staphylococcus aureus). Supplementing the engineered B. subtilis to the pig feed could significantly promote the piglet growth and reduced diarrhea incidence of the piglets. Conclusion: The generated B. subtilis strain can efficiently express pBD-2/CP1 fusion antimicrobial peptide, the recovered pBD-2 and CP1 peptides possess potent antimicrobial activities to a variety of bacterial species in vitro. Supplementation of the engineered B. subtilis in pig feed obviously promote piglet growth and resistance to the colibacillosis.

Identification of a Deoxyribonuclease I Inhibitor from a Phage-Peptide Library

  • Choi, Suk-Jung;Sperinde, Jeffrey J.;Szoka, Francis C. Jr.
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.54-59
    • /
    • 2005
  • Deoxyribonuclease I (DNase I) is a divalent cation dependent endonuclease and thought to be a significant barrier to effective gene delivery. The only known DNase I-specific inhibitor is monomeric actin which acts by forming a 1:1 complex with DNase I. Its use, however, is restricted because of tendency to polymerize under certain conditions. We screened two random phage peptide libraries of complexity $10^8$ and $10^9$ for DNase I binders as candidates for DNase I inhibitors. A number of DNase I-binding peptide sequences were identified. When these peptides were expressed as fusion proteins with Escherichia coli maltose binding protein, they inhibited the actin-DNase I interaction ($IC_{50}=0.1-0.7{\mu}M$) and DNA degradation by DNase I ($IC_{50}=0.8-8{\mu}M$). Plasmid protection activity in the presence of DNase I was also observed with the fusion proteins. These peptides have the potential to be a useful adjuvant for gene therapy using naked DNA.