• Title/Summary/Keyword: fusion drilling

Search Result 14, Processing Time 0.026 seconds

Experimental study on micro-hole drilling of anodized aluminum using picosecond laser (피코초 레이저를 이용한 양극산화 알루미늄 미세 홀 가공의 실험적 연구)

  • Oh, B.K.;Bang, J.H.;Kim, J.K.;Lim, S.M.;Lee, S.K.;Jeong, S.H.;Hong, S.K.
    • Laser Solutions
    • /
    • v.17 no.2
    • /
    • pp.5-10
    • /
    • 2014
  • Aluminum has been widely used in the electric applications because of light metals. When mechanical element is periodically moving with contacting other surfaces, the anodizing process for aluminum is useful for avoiding the abrasive damage. The anodized element has quietly different characteristics with respect to the distribution of hardness and crystal structure. In this work, the laser drilling of anodized surface is studied experimentally. Fusion drilling method - laser drilling with inert gas blowing - is used. The effect of various process parameters (gas pressure, laser power, focus position) is investigated with respect to the hole size and circularity.

  • PDF

Adaptive Control by the Fusion of Genetic Algorithms and Fuzzy Inference on Micro Hole Drilling (미세드릴가공에 있어서 유전알고리즘과 퍼지추론의 합성에 의한 적응제어)

  • Paik, In-Hwan;Chung, Woo-Seop;Kweon, Hyeog-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.95-103
    • /
    • 1995
  • Recently the trends toward reduction in size of industrial products have increased the application of micro drilling. But micro drilling has still much difficulty so that the needs for active control which give adaptation to controller are expanding. In this paper initial cutting condition was determined for some sorkpieces by experiment and GA-based Fuzzy controller was devised by genetic algorithms and fuzzy inference. The fuzzy inference has been applied to the various prob- lems. However the determination of the membership function is one of the difficult problem. So we introduce a genetic algorithms and propose a self-tuning method of fuzzy membership function. Based on this intelligent control, automation of micro drilling was carried out like the cutting process of skilled machinist.

  • PDF

Modeling and Analysis of Thermal Effects of Underwater Laser Drilling for Ceramics (세라믹에 대한 수중 레이저 드릴링의 열영향 모델링 및 해석)

  • Kim, Teak Gu;Kim, Joohan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1265-1271
    • /
    • 2013
  • In this work, modeling and analysis of thermal effects laser drilling under water for ceramics were presented. Laser is a unique tool for machining ceramics due to the characteristic of non-contact material removal. However, ablation by a laser often induces a thermal effect on the material and an increased heat-affected-zone or deposition of debris can be observed on the machined parts. The underwater surrounding improved a heat transfer rate to cooling down the machined part and could prevent any deposition of debris near the machined surfaces and edges. The heat modeling was applied to obtain the temperature distributions as well as temperature gradients between the material and surroundings. The cooling effect of the underwater laser drilling was improved and a more stable temperature distribution was calculated. The actual laser drilling results of ceramic laser drilling were presented to verify the effects of underwater laser drilling.

Trend Analysis of Drilling Technology for Top-Hammer Drilling Machine (Top-Hammer 천공기 국내외 기술동향 분석)

  • Song, Chang-Heon;Kwon, Ki-Beom;Shin, Dae-Young;Hwang, Woon-Kyu;Lim, Jong-Hyuk;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.271-279
    • /
    • 2013
  • This report introduced the types of drilling equipment and their operation mechanisms. The state of the art technologies of the Top-hammer drill equipment were investigated and the technology level of Korean drill industry was compared to that of the advanced country. Based on the investigation, the necessity of fusion research and development in the Korean drilling technology and industry was discussed, and the future strategy to catch up with the advanced technology was suggested.

Sensor Fusion and Neural Network Analysis for Drill-Wear Monitoring (센서퓨젼 기반의 인공신경망을 이용한 드릴 마모 모니터링)

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.77-85
    • /
    • 2008
  • The objective of the study is to construct a sensor fusion system for tool-condition monitoring (TCM) that will lead to a more efficient and economical drill usage. Drill-wear monitoring has an important attribute in the automatic machining processes as it can help preventing the damage of tools and workpieces, and optimizing the drill usage. In this study, we present the architectures of a multi-layer feed-forward neural network with Levenberg-Marquardt training algorithm based on sensor fusion for the monitoring of drill-wear condition. The input features to the neural networks were extracted from AE, vibration and current signals using the wavelet packet transform (WPT) analysis. Training and testing were performed at a moderate range of cutting conditions in the dry drilling of steel plates. The results show good performance in drill- wear monitoring by the proposed method of sensor fusion and neural network analysis.

Computer Integrated Surgical Robot System for Spinal Fusion

  • Kim Sungmin;Chung Goo Bong;Oh Se Min;Yi Byung-Ju;Kim Whee Kuk;Park Jong Il;Kim Young Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.265-270
    • /
    • 2005
  • A new Computer Integrated Surgical Robot system is composed of a surgical robot, a surgical planning system, and an optical tracking system. The system plays roles of an assisting surgeon and taking the place of surgeons for inserting a pedicle screw in spinal fusion. Compared to pure surgical navigation systems as well as conventional methods for spinal fusion, it is able to achieve better accuracy through compensating for the portending movement of the surgical target area. Furthermore, the robot can position and guide needles, drills, and other surgical instruments or conducts drilling/screwing directly. Preoperatively, the desired entry point, orientation, and depth of surgical tools for pedicle screw insertion are determined by the surgical planning system based on CT/MR images. Intra-operatively, position information on surgical instruments and targeted surgical areas is obtained from the navigation system. Two exemplary experiments employing the developed image-guided surgical robot system are conducted.

Residual stresses measurement in the butt joint welded metals using FSW and TIG methods

  • Taheri-Behrooz, Fathollah;Aliha, Mohammad R.M.;Maroofi, Mahmood;Hadizadeh, Vahid
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.759-766
    • /
    • 2018
  • Friction Stir Welding (FSW) is a solid-state process, where the objects are joined together without reaching their melting point. It has been shown that this method is a suitable way to join dissimilar aluminium alloys. The current article employed hole drilling technique to measure the residual stress distribution experimentally in different zones of dissimilar aluminium alloys AA6061-T6 and AA7075-T6 Butt welded using FSW. Results are compared with those of similar AA6061-T6 plates joined using a conventional fusion welding method called tungsten inert gas (TIG). Also, the evolution of the residual stresses in the thickness direction was investigated, and it was found that the maximum residual stresses are below the yield strength of the material in the shoulder region. It was also revealed that the longitudinal residual stresses in the joint were much larger than the transverse residual stresses. Meanwhile, Vickers micro hardness measurements were performed in the cross-section of the samples. The largest hardness values were observed in the stir zone (SZ) adjacent to the advancing side whereas low hardness values were measured at the HAZ of both alloys and the SZ adjacent to the retreating side.

Anterior Tunnelling Operation for Cervical Radiculopathy : A Report of First 32 Cases (경추 신경근병증에 대한 전방 터널링 수술 : 초기 32례에 대한 보고)

  • CHo, Tae-Hyun;Song, Jun-Hyeok;Suh, Jung-Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.7
    • /
    • pp.870-875
    • /
    • 2001
  • Objectives : Anterior tunnelling technique consist of anterior cervical fractional interspace decompression without fusion. This method provides sufficient space for adequate neuroforaminal decompression but avoids the need for fusion or fixation. We report early clinical results of 32 cases that underwent anterior tunnelling operation for treatment of cervical radiculopathy. Methods : This method is identical to conventional approach until the exposure of anterior cervical body and bilateral retraction of longus colli is made. A vertical window is then made at the vertebral bodies and disc space lateral to the insertion site of the longus colli. The window is deepened with drilling that follows a tunnelling fashion down to the compressive lesion. We analyzed clinical results from 32 patients who treated between December 1998 and August 2000. Results : Satisfactory results were obtained in 87% of the patients. Two patients required revision surgery. None revealed surgical spinal instability on last follow-up. Conclusion : Anterior tunnelling operation is an acceptable surgical option for the treatment of cervical radiculopathy. Its advantages are short hospitalization, minimal postoperative discomfort, and technical feasibility.

  • PDF

New Technical Tip for Anterior Cervical Plating : Make Hole First and Choose the Proper Plate Size Later

  • Park, Jeong-Yoon;Zhang, Ho-Yeol;Oh, Min-Chul
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.4
    • /
    • pp.212-216
    • /
    • 2011
  • Objective : It is well known that plate-to-disc distance (POD) is closely related to adjacent-level ossification following anterior cervical plate placement. The study was undertaken to compare the outcomes of two different anterior cervical plating methods for degenerative cervical condition. Specifically, the new method involves making holes for plate screws first with an air drill and then choosing a plate size. The other method was standard, that is, decide on the plate size first, locate the plate on the anterior vertebral body, and then drilling the screw holes. Our hypothesis was that the new technical tip may increase POD as compared with the standard anterior cervical plating procedure. Methods : We retrospectively reviewed 49 patients who had a solid fusion after anterior cervical arthrodesis with a plate for the treatment of cervical disc degeneration. Twenty-three patients underwent the new anterior cervical plating technique (Group A) and 26 patients underwent the standard technique (Group B). POD and ratios between POD to anterior body heights (ABH) were measured using postoperative lateral radiographs. In addition, operating times and clinical results were reviewed in all cases. Results : The mean durations of follow-up were $16.42{\pm}5.99$ (Group A) and $19.83{\pm}6.71$ (Group B) months, range 12 to 35 months. Of these parameters mentioned above, cephalad POD (5.43 versus 3.46 mm, p=0.005) and cephalad POD/ABH (0.36 versus 0.23, p=0.004) were significantly greater in the Group A, whereas operation time for two segment arthrodesis (141.9 versus 170.6 minutes, p=0.047) was significantly lower in the Group A. There were no significant difference between the two groups in caudal POD (5.92 versus 5.06 mm), caudal POO/ABH (0.37 versus 0.32) and clinical results. Conclusion : The new anterior cervical plating method represents an improvement over the standard method in terms of cephalad plate-to-disc distance and operating time.

Effects of Electric Stimulation Conditions on In Vitro Fusion and Developmental Rates of Nuclear Transplanted Porcine Embryos (전기적 융합조건이 돼지 핵이식 수정란의 융합 및 체외발달에 미치는 영향)

  • 박준규;박희성
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.2
    • /
    • pp.125-132
    • /
    • 2002
  • This study was conducted to examine the effects of electric stimulation conditions on in vitro developmental ability of procine embryos after somatic cell nuclear transfer, The porcine ear cell was cultured in vifro for confluency in serum-starvation condition (TCM-199+0.5% FBS) for cell confluency. The zona pellucida of IVM oocytes were partially drilled using laser system. Single somatic cell was individually transferred into the enucleated oocyte. The reconstructed embryos were electrically fused with 0.3M mannitol. After electric fusion, the embryos were activated and cultured in NCSU-23 medium containing 10% FBS at 39$^{\circ}C$, 5% $CO_2$ in air for 6 to 8 days. Nuclear transferred(NT) oocytes which fused at a field strength of 1.90kv/cm showed a higher (P<0.05) fusion rate(49.5%, 50/101) compared to 2.10 kv/cm(25.8%, 24/93) or 2.50kv/cm(30.3%, 27/89). After electric activation, the cleavage rate of NT embryos was 48.0(24/50), 66.6(16/24) and 70.3% (19/27), respectively and these were not different. There was no significant difference in fusion rate by duration and pulse of electric stimulation. In cleavage rate, however, more NT embryos(76.3%, 45/59) cleaved at 60 $\mu$sec twice than other embryos(49.1 to 56.5%) with different conditions of electric stimulation(P<0.05). NT embryos activated at a field strength of 1.50kv/cm showed a higher developmental rate(9.8%, 5/51) than those embryos activated at 1.25kv/cm(0%) or parthenotes(6.4%, 7/109). These results suggest that some factors such as field strength, duration and pulse of electric stimulation could be affected to in vitro developmental ability of nuclear transplanted porcine embryos.