• 제목/요약/키워드: fused fabrication filament (FFF) 3D printing

검색결과 8건 처리시간 0.02초

FFF 방식으로 제작된 PLA의 열화에 따른 선형탄성 및 초탄성 모델의 비교에 관한 연구 (A Comparative Study of the Linear-elastic and Hyperelastic Models for Degradation of PLA Prepared using Fused Filament Fabrication)

  • 최나연;신병철;장성욱
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.1-7
    • /
    • 2020
  • Fused filament fabrication (FFF) is a process extruding and stacking materials. PLA materials are one of the most frequently used materials for FFF method of 3D printing. Polylactic acid (PLA)-based materials are among the most widely used materials for FFF-based three-dimensional (3D) printing. PLA is an eco-friendly material made using starch extracted from corn, as opposed to plastic made using conventional petroleum resin; PLA-based materials are used in various fields, such as packaging, aerospace, and medicines. However, it is important to analyze the mechanical properties of theses materials, such as elastic strength, before using them as structural materials. In this study, the reliability of PLA-based materials is assessed through an analysis of the changes in the linear elasticity of these materials under thermal degradation by applying a hyperelastic analytical model.

3D프린터용 설계데이터의 저작권보호와 원격출력을 지원하는 오픈 마켓 시스템 개발 (Development of a 3D Printing Open-market System for Copyright Protection and Remote 3D Printing)

  • 김성균;유우식
    • 대한산업공학회지
    • /
    • 제41권3호
    • /
    • pp.253-258
    • /
    • 2015
  • The 3D printing is any of various processes for making a three dimensional object of almost any shape from a 3D model. Recently, a rapidly expanding hobbyist and home-use market has become established with the inauguration of the open-source RepRap and Fab@Home projects. However, this causes problems regarding copyright protection and usage of illegal 3D data. In this paper, we developed a 3D printing open-market system, which guarantees copyright protection using the remote 3D printing without direct distribution of 3D design data. Because most of the home-use 3D printers are FFF (Fused Filament Fabrication) based on NC code system, open-market system uses FFF 3D printers. Also, open-market system inspects the uploaded 3D model data, so the system can prevent distribution of illegal model data such as weapons, etc.

FDM 3D Printing 적층조건에 따른 기계적 물성의 연구 (A study of mechanical properties with FDM 3D printing layer conditions)

  • 김범준;이태흥;손일선
    • Design & Manufacturing
    • /
    • 제12권3호
    • /
    • pp.19-24
    • /
    • 2018
  • Fused deposition Modeling (FDM) is one of the most widely used for the prototype of parts at ease. The FDM 3D printing method is a lamination manufacturing method that the resin is melted at a high temperature and piled up one by one. Another term is also referred to as FFF (Fused Filament Fabrication). 3D printing technology is mainly used only in the area of prototype production, not in production of commercial products. Therefore, if FDM 3D printer is applied to the product process of commercial products when considered, the strength and dimensional accuracy of the manufactured product is expected to be important. In this study, the mechanical properties of parts made by 3D printing with FDM method were investigated. The aim of this work is to examine how the mechanical properties of the FDM parts, by changing of processing FDM printing direction and the height of stacking layer is affected. The effect of the lamination direction and the height of the stacking layer, which are set as variables in the lamination process, by using the tensile specimen and impact specimen after the FDM manufacturing process were investigated and analyzed. The PLA (Poly Lactic Acid) was used as the filament materials for the 3D printing.

Fused Filament Fabrication of Poly (Lactic Acid) Reinforced with Silane-Treated Cellulose Fiber for 3D Printing

  • Young-Rok SEO;Birm-June KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권3호
    • /
    • pp.205-220
    • /
    • 2024
  • Various polylactic acid (PLA) blends were reinforced with untreated or silane-treated micro-sized cellulose fiber (MCF), successfully prepared as 3D printing filaments and then printed using a fused filament fabrication (FFF) 3D printer. In this study, we focused on developing 3D-printed MCF/PLA composites through silane treatment of MCF and investigating the effect of silane treatment on the various properties of FFF 3D-printed composites. Fourier transform infrared spectra confirmed the increase in hydrophobic properties of silane-treated MCF by showing the new absorption peaks at 1,100 cm-1, 1,030 cm-1, and 815 cm-1 representing C-NH2, Si-O-Si, and Si-CH2 bonds, respectively. In scanning electron microscope images of silane-treated MCF filled PLA composites, the improved interfacial adhesion between MCF and PLA matrix was observed. The mechanical properties of the 3D-printed MCF/PLA composites with silane-treated MCF were improved compared to those of the 3D-printed MCF/PLA composites with untreated MCF. In particular, the highest tensile and flexural modulus values were observed for S-MCF10 (5,784.77 MPa) and S-MCF5 (2,441.67 MPa), respectively. The thermal stability of silane-treated MCF was enhanced by delaying the initial thermal decomposition temperature compared to untreated MCF. The thermal decomposition temperature difference at T95 was around 26℃. This study suggests that the effect of silane treatment on the 3D-printed MCF/PLA composites is effective and promising.

3D 프린팅 된 탄소 단섬유강화 복합재료의 후처리 효과가 재료의 기계적 성능에 미치는 영향 (Effect of Post-processing on Mechanical Properties of 3D Printed Carbon Chopped Fiber Reinforced Composites)

  • 차가락;장승환
    • Composites Research
    • /
    • 제35권6호
    • /
    • pp.463-468
    • /
    • 2022
  • 상용 FFF (Fused filament fabrication) 3D 프린터로 제조된 탄소 단섬유강화 나일론 복합재료 구조의 내부 채움 패턴(Infill pattern)의 높은 공극률은 프린팅 된 구조의 기계적 성능을 결정한다. 본 연구는 프린팅 된 구조의 내부 채움 패턴의 공극률을 줄여서 기계적 특성을 개선하기 위해 사각형 내부 채움 구조로 제작된 Onyx 복합 재료 시편의 열압밀 조건에 따른 시편의 기계적 성능을 실험적으로 평가하고, 가장 우수한 기계적 물성을 유도하는 열압밀 공정 조건(145℃, 4 MPa, 12 min)을 찾았다. 현미경 관찰결과 열압밀 후처리를 겪은 복합재료 시편의 내부 채움 공극률이 효과적으로 줄어듦을 확인하였다. 후처리된 시편의 기계적 성능을 확인하기 위해, 후처리를 하지 않은 대조군 시편과, 후처리 후 밀도와 치수를 동일하게 설정하여 출력한 시편과 함께 인장시험 및 3점 굽힘시험을 수행하여 기계적 물성을 비교한 결과 열압밀 후처리를 수행한 경우 기계적 물성이 효과적으로 개선되는 것을 확인하였다.

CT 데이터와 3D 프린팅 기술을 이용한 뼈 모형 X선 팬텀 제작에 관한 연구 (A Study on the Fabrication of bone Model X-ray Phantom Using CT Data and 3D Printing Technology)

  • 윤명성;한동균;김연민;윤준
    • 한국방사선학회논문지
    • /
    • 제12권7호
    • /
    • pp.879-886
    • /
    • 2018
  • 3-dimensional(D) 프린터는 컴퓨터로 모델링 한 데이터를 바탕으로 3차원의 입체 물체를 출력할 수 있는 장비이다. 이러한 특징을 방사선과학 분야와 융합하여, CT 데이터를 이용한 뼈 모형 X선 팬텀제작 등에 활용되고 있다. 본 연구는 기존의 Pelvis팬텀을 CT 스캔하고 얻어진 데이터로 Fused Filament Fabrication(FFF) 3D 프린터의 소재인 PLA, Wood, XT-CF20, Glow fill, Steel 필라멘트를 이용하여, 뼈 모형 팬텀을 제작하였다. 기존의 Pelvis 팬텀과 3D 프린터로 제작된 5가지 재질의 팬텀을 동일한 조건으로 CT 스캔 하고 얻어진 영상에서 Hounsfield Unit(HU)을 측정하였으며, 진단용X선 발생장치를 이용하여 SI, SNR을 측정하여 각 팬텀을 비교 분석하였다. 그 결과 사지 X선 검사 조건 내에서 X선 팬텀은 glow fill 필라멘트가 가장 적합하다는 것을 알 수 있었다. 본 연구의 기반으로 필라멘트의 특성들을 알 수 있었으며, X선 팬텀 제작에 대한 실용성을 확인하였다.

FFF 3D 프린터를 이용한 DfAM 기반 소형선박용 스탠션 지속가능 개발 사례 연구 (A Case Study on the Sustainability for a Stanchion of Recreational Crafts based on the Design for Additive Manufacturing Using a FFF-type 3D Printer)

  • 이동건;박본영
    • 대한조선학회논문집
    • /
    • 제58권5호
    • /
    • pp.294-302
    • /
    • 2021
  • In this study, the 3D printing technique called design for additive manufacturing (DfAM) that is widely used in various industries was applied to marine leisure ships of equipment. The DfAM for the stanchion for crew safety was applied to the equipment used in an actual recreational craft. As design constraints, the design alternatives were not to exceed the safety and weight of the existing stainless steel material, which were reviewed, and the production of a low-cost FFF-type 3D printing method that can be used even in small shipyards was considered. Until now, additive manufacturing has been used for manufacturing only prototypes owing to its limitations of high manufacturing cost and low strength; however, in this study, it was applied to the mass production process to replace existing products. Thus, a design was developed with low manufacturing cost, adequate performance maintenance, and increased design freedom, and the optimal design was derived via structural analysis comparisons for each design alternative. In addition, a life-cycle assessment based on the ISO 1404X was conducted to develop sustainable products. Through this study, the effectiveness of additive manufacturing was examined for future applications in the shipbuilding industry.

삼차원 프린팅 기술을 이용한 전산화단층영상 품질 측정용 팬텀 제작 및 비교 연구 (A Study on the Fabrication and Comparison of the Phantom for Computed Tomography Image Quality Measurements Using Three-Dimensions Printing Technology)

  • 윤명성;홍순민;허영철;한동균
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권6호
    • /
    • pp.595-602
    • /
    • 2018
  • Quality control (QC) of Computed Tomography (CT) devices is based on image quality measurement on AAPM CT phantom which is a standard phantom. Although it is possible to control the accuracy of the CT apparatus, it is expensive and has a disadvantage of low penetration rate. Therefore, in this study, we make image quality measurement phantom at low cost using FFF (Fused Filament Fabrication) type three-dimensional printer and try to analyze the usefulness, compare it with existing standard phantom. To print a phantom, We used three-dimensional printer of the FFF system and PLA (Poly Lactic Acid, density: $1.24g/cm^3$) filament, and the CT device of 64 MDCT (Aquilion CX, Toshiba, Japan). In addition, we printed a phantom using three-dimensional printer after design using various tool based on existing standard phantom. For image quality evaluation, AAPM CT phantom and self-generated phantom were measured 10 times for each block. The measured data were analyzed for significance using the Mannwhiteney U-test of SPSS (Version 22.0, SPSS, Chicago, IL, USA). As a result of the analysis, phantom fabricated with three-dimensional printer and standard phantom showed no significant difference (p>0.05). Furthermore, we confirmed that image quality measurement performance of a phantom using three-dimensional printer is similar to the existing standard phantom. In conclusion, we confirmed the possibility of low cost phantom fabrication using three dimensional printer.